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Abstract—Recommending users with preferred point-of-
interests (POIs) has become an important task for location-
based social networks, which facilitates users’ urban exploration
by helping them filter out unattractive locations. Although the
influence of geographical neighborhood has been studied in the
rating prediction task (i.e. regression), few work have exploited it
to develop a ranking-oriented objective function to improve top-N
item recommendations. To solve this task, we conduct a manual
inspection on real-world datasets, and find that each individual’s
traits are likely to cluster around multiple centers. Hence, we
propose a co-pairwise ranking model based on the assumption
that users prefer to assign higher ranks to the POIs near
previously rated ones. The proposed method can learn preference
ordering from non-observed rating pairs, and thus can alleviate
the sparsity problem of matrix factorization. Evaluation on two
publicly available datasets shows that our method performs
significantly better than state-of-the-art techniques for the top-N
item recommendation task.

Keywords—top-N item recommendation; point-of-interest; spa-
tial preference; pairwise ranking.

I. INTRODUCTION

Location-based social networks have emerged as an ap-
plication to assist users in their decision-making among a
wide variety of point-of-interests (POIs), e.g. bars, stores, and
cinemas. Typical location-based websites, such as yelp.com
and foursquare.com, allow users to check-in POIs with mo-
bile devices like smart phones and share tips with online
friends [1]. Yelp, for instance, reaches a monthly average
of 83 million unique access via mobile devices, with nearly
hundred million reviews by the end of 20151. The huge
volume of location data contains valuable information about
business popularity and customer preferences. However, how
to effectively make a satisfactory decision among a large
number of POIs has become a tough challenge for individuals.
POI recommendation aims to solve such a problem by learning
preference from users’ previous visits.

In the field of personalized POI recommendation, the key
tasks are to estimate users’ preferences to unknown POIs and
return the top-N POIs with highest rankings for them. Thus,
most efforts focus on fitting a preference scoring function
based on users’ visiting profiles. Specifically, various types
of contextual information, e.g. geographical coordinates [2],
time stamps [1], social friends [3] have been studied within

1http://www.yelp.co.uk/press

a single collaborative filtering (CF) model (e.g. matrix factor-
ization [4]) or a unified framework [2][5]. However, all these
methods are essentially based on the pointwise theory that
aims to regress real-valued scores on item instances.

Unlike previous work, Rendle et al. [6] argue that the task of
item recommendation is actually a classification (qualitative)
problem rather than a regression (quantitative) one. Hence,
they devise a Bayesian personalized ranking (BPR) model
based on pairwise preference comparison over observed and
non-observed feedback such that the Area Under the ROC
Curves (AUC) can be maximized. Prior research has shown
that the BPR-based approaches empirically outperform point-
wise methods for implicit feedback data [6][7]. Nevertheless,
it is reasonable to argue that the BPR-based ranking models
do not explicitly exploit geographical influence. Hence, there
seems a large marginal space left to improve the performance
by extending it for POI recommendation.

We may infer that jointing geo-spatial preference and
BPR optimization criterion creates new opportunities for POI
recommendation. To motivate this work, we first conduct a
manual inspection on two real-world datasets, and observe
that a user’s rating distribution represents a spatial clus-
tering phenomenon. Thus, we presume that unrated POIs
surrounding a POI that users prefer are more likely to be
assigned higher ranks over the distant unrated ones. Based
on this assumption, we propose a co-pairwise ranking model
called geographical Bayesian personalized ranking (GeoBPR).
Specifically, a user’s geo-spatial preference is exploited as
intermediate feedback, which is treated as weak preference
relative to positive feedback while as strong preference in
comparison to other non-positive feedback. In other words, we
reformulate the item recommendation problem into a two-level
joint pairwise ranking scheme. To the best of our knowledge,
the reported work is the first to improve the BPR pairwise as-
sumption by injecting users’ geographical preference. Finally,
we conduct extensive experiments to evaluate the effectiveness
of GeoBPR, and the results indicate that our proposed model
can significantly outperform an array of counterparts in terms
of four popular ranking metrics.

II. RELATED WORK

In this section, we briefly review the recent advances in POI
recommendation, particularly those employing geographical
influence for POI recommendation. As the major challenge of



top-N item recommendation falls within the realm of One Class
Collaborative Filtering (OCCF), we also review the related
techniques.

A. POI recommendation

Recently, a number of valuable work have been presented in
the realm of POI recommendation. Based on the type of addi-
tional information involved, POI recommendation algorithms
have been classified into four categories [8], which are (1) pure
check-in/rating based POI recommendation approaches [9],
(2) social influence enhanced POI recommendation [2][5],
(3) temporal influence enhanced POI recommendation [1][5],
and (4) geographical influence enhanced POI recommendation
[2][4]. In particular, in terms of geographical influence en-
hanced POI recommendation, usual approaches are to assume
that users tend to visit nearby POIs and the probability of
visiting a new place decreases as the distance increases. For
example, Ye et al. [10] and Yuan et al. [11] modelled the
check-in probability to the distance of the whole visiting his-
tory by power-law distribution; Chen et al. [2] pointed out that
they ignored the geographical cluster phenomenon of users’
check-ins, and computing all pairwise distance of the whole
visiting history is time-consuming and thus cannot be adapted
to large-scale datasets. In contrast, they suggested to model the
probability of a user’s check-ins as a multi-center Gaussian
Model (MGM). Moreover, Lian et al. [4] incorporated the
spatial clustering phenomenon into matrix factorization to
improve recommendation performance. All discussed methods
are essentially based on the pointwise theory that aims to
regress a real-valued score, whereas few work attempt to build
a ranking-based estimator for personalized recommendation,
which is the main objective in this paper.

B. One-Class Collaborative Filtering

In the context of POI recommendation, it is well known
that only positive feedback (e.g. check-ins) can be observed,
whereas the non-observed feedback is mixed with both nega-
tive and unlabeled positive samples, referred to as One-Class
Collaborative Filtering (OCCF) [12]. To solve the task, Rendle
et al. [6] devised a Bayesian personalized ranking (BPR)
model based on pairwise preference comparison over observed
and non-observed rating pairs such that the Area Under the
ROC Curves (AUC) can be maximized. Empirically, the pair-
wise ranking method achieves much better performance than
traditional pointwise methods [6][7]. Following this, various
ideas have been inspired by fusing other contextual infor-
mation. For instance, the work in [13] extended BPR-based
matrix factorization with tensor factorization (i.e. RTF). They
further suggested to apply adaptive and context-dependent
oversampling to replace the uniform sampling of BPR [14].
In [15][16], BPR criterion was extended by modeling so-
cial relations and social preference information. Similarly,
Pan et al. [7] proposed an improved algorithm called group
Bayesian personalized ranking by leveraging rich interactions
among users to relax the pairwise assumption. More recently,
Li et al. [17] designed a pairwise ranking model (Rank-
GeoFM) based on the Ordered Weighted Pairwise Classifica-

TABLE I: Basic statistics of Datasets

DataSets #Users #POIs #Ratings Density
Phoenix 4510 16402 226351 0.31%
Las Vegas 4470 11376 207649 0.41%
DataSets Avg.U N.50 N.100 N.200
Phoenix 50.19 2.51 5.26 12.6
Las Vegas 46.45 5.54 9.44 20.8
DataSets N.400 N.600 N.1000 N.2000
Phoenix 29.3 46.1 80.26 189.8
Las Vegas 47.6 77.3 146.1 392.3

The “Density” column is the density of each dataset (i.e. Density=#Ratings/(#Users
× #Items)). The “Avg.U” column denotes the average number of visited POIs
for each user. The “N.k” column refers to the average number of geographical
neighbors for a POI at radius k.

tion (OWPC) criterion that can incorporate different contextual
information. However, the time complexity of Rank-GeoFM
is largely increased because a number of samplings need to be
drawn and their scores are computed before each Stochastic
Gradient Descent (SGD) update is performed. Besides, within
the proposed negative item sampler, the non-observed (nega-
tive) items are sampled uniformly, which might require a large
number of draws before finding the one that is ranked higher
than a positive item [14]. In contrast, our proposed GeoBPR
does not increase the time complexity in both learning and
predicting processes.

It is worth to mention that after finishing this work, we
notice that two recent work (i.e. [18][19]) have exploited BPR
learning techniques for next POI recommendation task. How-
ever, we argue that our work is different in two aspects: (1)
We model the geographical proximity influence from the fun-
damental BPR assumption, and propose a new and improved
one. Accordingly, a two-level pairwise ranking model has been
presented to learn the new assumption. By contrast, both work
in [18][19] model the geographical influence by extending
the preference scoring function from matrix factorization to
tensor-based factorization [20] without modifying the basic
pairwise preference assumption. (2) Our work falls in the area
of standard top-N item recommendation task, while the above
two work are referred to as next POI recommendation task by
solving different research problems.

III. GEO-SPATIAL PREFERENCE ANALYSIS

A. Data Description
A recently released dataset Yelp2 is used for data analysis.

We extract data from two American cities (Phoenix and Las
Vegas) that have the largest number of POIs and follow the
common practice to remove users with less than 20 ratings and
POIs with less than 5 ratings to reduce noise data3, similarly
as preprocessed in [2][21–23]. The basic statistics are shown
in Table I.

B. Motivation

Motivation 1: Our first motivation is derived from the Tobler’s
First Law of Geography, which is “Everything is related
to everything else, but near things are more related than
distant things” [24]. This implies: (1) a user tends to visit

2www.yelp.co.uk/dataset challenge
3The cold-start problem is beyond the concern of this work.



(a) Phoenix (b) Las Vegas

Fig. 1: The overview of a user’s multi-center mobility be-
haviours on Phoenix and Las Vegas.

nearby places [10]; (2) nearby places potentially have some
relevance [21].

Motivation 2: Chen et al. [2] observed that users’ check-in
traces usually follows a multi-center distribution. Accordingly,
they modelled the probability of a user’s check-ins on a
location as Multi-center Gaussian distribution and then fused
the users’ geographical preference and latent factor together in
a unified framework. Ye et al. [10] argued that the probability
of POI pairs visited by the same user approximately obeys
power-law distribution with distance.

As a result, two main implications can be derived: (1) users
usually visit POIs close to their activity centers, such as their
homes and offices; (2) users may be interested in exploring
POIs near a location they visited before, which have to be
clustered together.

C. Proximity Analysis
We proceed to study if the above intuitive phenomena can

be observed on our datasets. Figure 1 depicts the geographical
distributions of POIs rated by two random users. It can be seen
that the users’ POIs indeed cluster around several spatial areas.
That is, the above two implications are likely to hold on the
Yelp datasets. Furthermore, we design the following statistical
experiments to verify the intuitions.

Exp1: We randomly pick two POIs (la, lb) from a city (e.g.
Phoenix) and calculate the distance d(a,b) between la and lb.
We repeat the experiment 10000 times in order to yield the
probability P that the distance d(a,b) is less than a threshold
µ (e.g. µ = 200m, where m is in meter).

Exp2: We randomly pick a user u from the same city in Exp1
and select two POIs that u has rated before, e.g. (la′ , lb′ ), then
calculate the distance d(a′ ,b′ ) between la′ and lb′ . We repeat
the experiment 10000 times to calculate the probability P ′ that
d(a′ ,b′ ) is less than the same threshold µ.

Table II shows the ratios of P ′ to P , which are indicators
to demonstrate the proximity influence of individuals’ rating
behaviors. As shown, the ratios are much greater than 1 with
all thresholds ([50, 2000]), which means P ′ is higher than P ,
in particular, P ′ is about 20 times larger than P when µ is
less than 200m. This implies that users’ visiting behaviors
are highly affected by spatial distance and that the users’
rated POIs are not geographically independent of each other.

TABLE II: Ratios of P ′/P

µ 50 100 200 400 600 1000 2000
Phoenix 44.7 28.8 23.3 18.9 13.6 10.2 8.0
Las Vegas 57.5 53.2 19.1 8.0 4.7 4.1 3.2

TABLE III: List of notations

Symbols Meanings
U set of users {u1, u2,...,u|U|}
L set of POIs {i1, i2,...,i|L|}
G geographical network
L+

u set of (u, i) pairs
L−u set of (u, j) pairs
LGui set of (u, g) pairs
Θ model parameters
W users’ latent factor matrix
H POIs’ latent factor matrix
b POI bias
λ, β regularization parameters
η learning rate
k the dimension of latent factors
ŷ the ranking score calculated from decomposed models
r̂ the ranking relations of two POIs rated by user u

Second, all the ratios decrease with the increase of µ. This is
consistent with intuition since the ratio should be close to 1 if
µ is large enough. Moreover, this observation keeps consistent
with our experimental results in Section VI-B.

Unlike previous work, we do not model the distribution
of multiple spatial cluster phenomenon directly since it is
not proper to assume all users mobility patterns correspond
to a prior distribution, e.g. Gaussian [2] or power-law [11]
distribution. Nevertheless, the statistical analysis implies that
an unrated POI surrounded a POI that one prefers is likely to
be more appealing (to her) compared with other faraway and
unrated places. The physical cost is the main difference that
distinguishes POI recommendation from other product recom-
mendations. Thus it becomes feasible to statistically model
this intuition by a two-level pairwise preference comparison,

(Preference Rank of) a POI one rated >
nearby POIs she unrated >
unrated POIs far away from all rated POIs.

IV. PRELIMINARY

First, we introduce several concepts used in this paper and
define the research problem of geo-spatial preference enhanced
POI recommendation. Then, we shortly recapitulate the basic
idea of Bayesian Personalized Ranking (BPR). Table III lists
the notations used in this work.

A. Problem Statement

In the context of typical POI recommendation, let U =
{u}Mu=1 denote the set of all users, and L = {i}Ni=1 denote
the set of all POIs, where M and N represent the number of
users and POIs respectively, i.e. M = |U| & N = |L|. Users’
check-in/rating information is commonly expressed via user-
POI check-in/rating action matrix C, where each entry cui is



Fig. 2: Two scenarios of user-POI pairs

the frequency or a binary value4 made by u at i. Generally,
the matrix C is extremely sparse (see Table I) since most
users only rate a small portion of POIs. In contrast to other
recommendation tasks, geographical information is available
for each POI, which is usually geocoded by a pair of latitude
and longitude.

In our scenario, we define the set of user-POI (u, i) pairs
as positive feedback if the rating behavior of u to i is
observed, denoted as L+

u = {(u, i)}. Unlike previous work
(e.g. [6]) that defines the set of non-observed pairs L\L+

u as
negative feedback, we introduce a new geographical feedback
by exploiting POI neighborhood information. In particular,
assume we observe a POI geographical network G = (L,L),
where (i, g) ∈ G indicates that i and g are geographical
neighbors. For each rated POI i, there is a neighbor g ∈ L,
which has not been rated by u. The set of (u, g) pairs is
defined as geographical feedback, denoted as LGui = {(u, g)}.
Besides, there is a POI j neither rated by u nor a geographical
neighbor of all rated POIs i ∈ L+

u . We define the set of (u, j)
pairs as negative feedback, denoted as L−u = {(u, j)}. For
example, the circular area in Figure 2 represents the range of
geographical neighbors. On the left side, (u, i1) and (u, i2)
are observed rating pairs, i.e. L+

u = {(u, i1), (u, i2)}; (u, g1)
and (u, g2) represent unobserved pairs, where g1 and g2 are
neighbors of i1 and i2, respectively, i.e. LGui1 = {(u, g1)},
LGui2 = {(u, g2)}; (u, j) represents the remaining unobserved
pairs, i.e. L−u = {(u, j)}. On the right side of Figure 2, g is
a common neighbor of i1 and i25.

The goal of this work is to recommend each user a personal-
ized ranked list of POIs from L\L+

u . Motivated by geo-spatial
proximity, the key challenge is to learn individuals’ implicit
preference by integrating positive, geographical and negative
feedback.

B. BPR: Ranking with Implicit Feedback

POIs that a user has never visited are either really unattrac-
tive or undiscovered yet potentially appealing [4]. This is
the key challenge of POI recommendation based on implicit
feedback. To tackle it, Rendle et al. [6] proposed a well-known
ranking-based optimization criterion Bayesian personalized
ranking (BPR) that maximizes a posterior estimation with
Bayesian theory. An intuitive assumption is made: user u
prefers item (i.e. POI in our case) i to item j, provided that

4For item recommendation task, it is common practice to handle explicit rating values
as implicit binary values.

5Further details with Figure 2 can also be found in Section V-A.

(u, i) rating pair is observed and (u, j) is unobserved, defined
by:

r̂uij(Θ) := ŷui(Θ) � ŷuj(Θ), i ∈ L+
u , j ∈ L\L+

u (1)

where Θ denotes a set of parameters of a ranking function
(i.e. matrix factorization in this work), ŷui(Θ) and ŷuj(Θ) are
the predicted score by the ranking function, r̂uij(Θ) says i is
preferred over j by u6. A unique characteristic of BPR is to
sort pairwise preference ŷui and ŷuj instead of regressing a
predictor to a numeric value.

V. THE GEOBPR MODEL

A. Model Assumption

The pairwise preference assumption of BPR, holds in
practice, empirically produces much better performance than
pointwise prediction methods [6][7]. However, we observe
that there are two drawbacks in the BPR assumption for POI
recommendation tasks: (1) The BPR algorithm is originally de-
signed for general item recommendations7, where the structure
of geo-spatial preference has not been explicitly considered.
Although the factors decomposed from matrix are semantically
latent, there is no evidence showing that the latent space has
included geographical features. Furthermore, leveraging geo-
graphical influence explicitly has been confirmed effectively
in the regression task, e.g. [2][4]. (2) A large number of non-
observed user-POI pairs cannot be employed for learning since
BPR treats non-positive pairs equally. Thus we believe there
is much room for improvement by exploiting geographical
proximity influence between users and POIs. Specifically,
we propose a novel assumption by explicitly modeling the
structure of geographical proximity factors.

Assumption-a: As stated in section III-C, individuals tend to
visit nearby places. Hence, we devise an intermediate process
to enhance the BPR assumption: user u prefers POI i to POI
g, provided that (u, i) rating pair is observed and (u, g) is
unobserved, where g is one of the geographical neighbors of
i; moreover, u prefers g to j, provided that (u, j) is unobserved
and j is not a geographical neighbor of all rated POIs. This
assumption can be formulated as follows:

ŷui � ŷug︸ ︷︷ ︸
:=r̂uig

∧ ŷug � ŷuj︸ ︷︷ ︸
:=r̂ugj

, i ∈ L+
u , g ∈ LGui, j ∈ L

−
u (2)

It can be seen the preference orders of non-observed pairs,
i.e. (u, g), (u, j) are now possible to be compared using our
assumption. Thus it seems promising that the sparsity problem
is likely to be alleviated. Moreover, based on this assumption
and the sound transitivity scheme [6], it is easy to infer as
follows:

ŷui � ŷug︸ ︷︷ ︸
:=r̂uig

∧ ŷui � ŷuj︸ ︷︷ ︸
:=r̂uij

(3)

We can see the assumption based on Eq.(3) reduces to that of
BPR (see Eq.(1)). In other words, the new assumption leads to

6Throughout this work, we will write r̂uij for r̂uij(Θ) to shorten notation, and the
same applies to r̂uig(Θ), r̂ugj(Θ), yui(Θ), yug(Θ) and yuj(Θ).

7An item can be anything, e.g. a book, a song as well as a POI.



a more accurate interpretation than typical BPR assumption.
Furthermore, the proposed assumption balances the contri-
bution between geographical preference and latent factors8.
Note that we cannot infer any preference relation from these
pairs: (ŷui1 , ŷui2), (ŷui1 , ŷug2), (ŷui2 , ŷug1), (ŷug1 , ŷug2)) (see
Figure 2).

Assumption-b: We are also interested in investigating an
opposite assumption since unvisited POIs near a frequently
visited POI are likely to be unattractive. This is because the
user is likely to know about these POIs since they are close
to her frequently visited ones, yet she has never chosen to
patronize them before. This might be a signal that she dislikes
them. In other words, geographical neighbors should be treated
more negatively than other unvisited ones. Visiting frequency
here is employed as the confidence of a user’s preference.
However, on the Yelp datasets, each POI has at most one rating
by each user. Intuitively, this assumption may not hold without
frequency information. For the sake of completeness of this
work, we also verify the effectiveness of this assumption,
formulated as follows:

ŷui � ŷuj︸ ︷︷ ︸
:=r̂uij

∧ ŷuj � ŷug︸ ︷︷ ︸
:=r̂ujg

, i ∈ L+
u , g ∈ LGui, j ∈ L

−
u (4)

Due to the space limitations, we merely elaborate the deriva-
tion process of our approach with assumption-a and report the
final performance of the two assumptions in section VI.

B. Model Derivation
Based on the above assumptions, we employ a maximum

posterior estimator to find the best ranking for a specific user
u:

arg max
Θ
P(Θ| >u) (5)

where Θ represents a set of model parameters as mentioned
before, >u is the total order, which represents the desired but
latent preference structure for user u. According to Bayesian
theory, the P(Θ| >u) can be inferred as:

P(Θ| >u) ∝ P(>u |Θ)P(Θ) (6)

where P (>u |Θ) is the likelihood function and P(Θ) is
the prior distribution of parameters Θ. Here three intuitive
assumptions are made: (1) Each user’s rating actions are
independent of every other user. (2) The preference ordering of
each triple of items (i, g, j) for a specific user is independent of
the ordering of every other triple. (3) The preference ordering
of (i, g) pair for a specific user is independent of the ordering
of (g, j) one. Based on the assumptions, Bernoulli distribution
over the binary random variable can be used to estimate the
likelihood function as follows:∏

u∈U
P(>u |Θ) =∏

(u,i,g,j)∈U×L×L×L

P (ŷui � ŷug ∧ ŷug � ŷuj |Θ)
δ((u,i,g,j)∈Ds)

· (1− P(ŷui � ŷug ∧ ŷug � ŷuj |Θ))
δ((u,i,g,j)/∈Ds) (7)

8
ŷ is usually computed by a latent factor model, i.e. matrix factorization in this work.

Ds is a poset of >u, which expresses the fact that that user
u is assumed to prefer i over g, and prefer g over j, i.e.
Ds =

{
(u, i, g, j)|i ∈ L+

u ∧ g ∈ LGui ∧ j ∈ L−u
}

. δ(x) is a
binary indicator with δ(x) = 1 if x is true and δ(x) = 0,
otherwise. Due to the totality and antisymmetry [6] of a
pairwise ordering scheme, Eq.(7) can be simplified to:∏

u∈U
P(>u |Θ) =

∏
u∈U,i∈L+

u ,g∈LGui

P(ŷui � ŷug|Θ)

∏
u∈U,g∈LGui,j∈L

−
u

P(ŷug � ŷuj |Θ)
(8)

We employ a differential function, e.g. σ(x) = 1
1+e−x , to

approximate the probability P(.) and map the value to proba-
bility range (0, 1). Unlike previous work, e.g. [6][7][20], which
assign an equal weight to each training pair, in this paper, we
design a weight function wig to control the contribution of
the preference ordering between ŷui and ŷug so as to relax the
assumption. Specifically, the two estimators can be derived as:

P(ŷui � ŷug|Θ) =
1

1 + e−wig(ŷui−ŷug)

P(ŷug � ŷuj |Θ) =
1

1 + e−(ŷug−ŷuj)
, wig =

1

1 + nig

(9)

where wig is to control the contribution of sampled training
pair (u, i) and (u, g) to the objective function, nig is the
number of rated POIs that are geographical neighbors of
POI g. wig equals 1 if no other rated POI shares g as a
geographical neighbor, and the value decreases if g is a public
geographical neighbor. The reason behind is that the above
assumption of pairwise preference may not always hold in
real applications. For example, POI g may be a geographical
neighbor of more than one rated POIs (see right side of Figure
2). In this case, a user u may potentially prefer an POI g to
POI i because g is close to the activity center of u. With
this setting, the contribution of geographical preference works
more reasonably.

Regarding prior density P(Θ), it is common practice to de-
sign a Gaussian distribution with zero mean and model specific
variance-covariance matrix λΘI , i.e. P(Θ) ∼ N (0, λΘI).

Finally, we reach the objective loss function of our GeoBPR:

GeoBPR := argmaxΘP(Θ|Ds) := argminΘ(λΘ||Θ||2

−
∑

u∈U,i∈L+
u ,g∈LGui

lnσ(wig(ŷui − ŷug))

−
∑

u∈U,g∈LGui,j∈L
−
u

lnσ(ŷug − ŷuj))
(10)

The prediction function ŷ is modelled by matrix factor-
ization, which is well known for discovering the underlying
interactions between users and items.

ŷui = Wu ·HT
i + bi =

k∑
f=1

wu,f × hi,f + bi (11)



Algorithm 1: GeoBPR Learning
Input: Ds, G(L,L)
Output: model parameters Θ
Initialize Θ with Normal distribution N (0, 0.1)
for u ∈ U do

Calculate L+
u , LGui, L−u

end
repeat

for u ∈ U do
Uniformly draw (i, g, j) from L+

u , LGui, L−u
Calculate cig , cgj , i.e.
cig = 1

1+e
wig(ŷui−ŷug) · wig, cgj = 1

1+e
ŷug−ŷuj

Wu ←Wu+η(cig(Hi−Hg)+cgj(Hg−Hj)−λuWu)
Hi ← Hi + η(cigWu − λiHi)
Hg ← Hg + η(−cigWu + cgjWu − λgHg)
bi ← bi + η(cig − βibi)
bg ← bg + η(−cig + cgj − βgbg)
bj ← bj + η(−cgj − βjbj)

end
until convergence;
return Θ

where Wu and HT
i represent latent factors of user u and POI

i resp., bi is the bias term of i9., i.e. Θ = {W ∈ RU×k, H ∈
RL×k, b ∈ RL}. The similar ranking functions apply to ŷug
and ŷuj .

Discussion. According to Eq.(10) & Eq.(11), we observe that
GeoBPR models the user’s preference rankings by taking into
account two types of factors: (1) due to the spatial proximity of
(i, g) pair, the difference of (ŷui, ŷug) models the preference
relations mostly based on general latent features10, such as
users’ latent factors (i.e. the taste of the user) and POI latent
factors (e.g. POI styles, item price, service reputation, etc.); (2)
by explicitly modeling the difference of (ŷug , ŷuj), the factor-
ization model is likely to learn more about the structure of geo-
spatial preference. Thus, by the optimal balance between the
geographical influence and the latent features, even the POIs
far away from the previously rated location have the chance
to be recommended when personal preference dominates.

C. Model Learning

Since Eq.(10) is differentiable, we adopt the widely used
stochastic gradient descent (SGD) for optimization. Specif-
ically, for each user u, we randomly select (i, g, j) triples
from positive, geographical and negative feedback, and then
iteratively update parameters Θ. The update equations are
given in Algorithm 1. Regarding the computational com-
plexity, we can see that each update rule is O(k), where
k is the number of latent dimensions in Eq.(11). The total
complexity is O(T |U|k), where T is the number of iterations.
For predicting a user’s preference on a POI, the complexity
is linear O(k). Both learning and predicting processes do not
increase the time complexity in contrast with BPR.

9The user bias term vananishes for predicting rankings and for optimization as the
pairwse comparison is based on one user level.

10Despite the success of latent factorization models, there is no literature to uncover
the specific structure of latent factors, which is also beyond the scope of this paper.

VI. EXPERIMENTS

A. Experimental Setup
Yelp datasets described in section III-A are used for eval-

uation. All experiments are conducted by using 5-fold cross-
validation. Specifically, we randomly split each dataset into
five folds and in each iteration four folds are used as the train-
ing set and the remaining fold as the testing set. The average
results over 5 folds are reported as the final performance.

Baseline Methods. We compare GeoBPR11 with an array of
strong baselines described as follows. Random (Rand): For
the sake of understanding the ranking effectiveness of different
algorithms, we launch a random one by randomly ordering
the candidate POIs and then create a list of recommended
locations. Most Popular (MP) [7][11]: It is to recommend
users with the top-N most popular POIs. The popularity of
POIs are computed by the number of ratings they received.
User-based Collaborative Filtering (UCF) [4][21]: It is
a typical memory-based collaborative filtering technique for
both rating prediction and item recommendation tasks. The
preference of a user to a candidate POI is calculated as an
aggregation of some similar users’ preference on POI. Pearson
correlation is used to calculate user similarity. Then, the top-30
most similar users are selected as nearest neighbors. MFM:
The basic idea of MFM is to fuse Multi-center features [2]
with Factorization Machines (FM) [25]. Following [2], we
produce several clusters based on a user’s previously visited
POIs and get the average coordinate of each cluster as a
centroid. The distance between a candidate POI and each
centroid is calculated as features. Then we apply FM to model
users’ latent preference and geo-spatial influence. BPR [6]:
It is a state-of-the-art algorithm optimized for top-N item
recommendations. As our proposed model is extended from
BPR, we consider it as the main method used for comparison.
NBPR: Inspired by [21], we implement the baseline by fusing
geographical neighborhood with matrix factorization, and then
adopts BPR criterion for learning.

Parameter Settings. Stochastic gradient descent (SGD) has
several critical hyperparameters to be tuned, which are: (1)
Learning rate η: To conduct a fair comparison, we apply the
5-fold cross-validation to find the best η for BPR (η = 0.05),
and then employ the same value for GeoBPR. For MFM and
NBPR, we apply the same procedure to tune η (η = 0.005). (2)
Factorization dimension k: We fix k = 30 for all models based
on matrix factorization. The effect of k value will be detailed
later. (3) Regularization λ, β: In our paper, regularization
parameters are grouped as GeoBPR has several parameters: λu
represents the regularization parameter of Wu; λπ represents
the regularization parameters of Hi, Hg , Hj (i.e. λi, λg , λj
resp.); βπ represents regularization parameters of bi, bg , bj (i.e.
βi, βg , βj resp.). On Phoenix dataset, λu = 0.03, λπ = 0.03,
βπ = 0.05; on Las Vegas dataset, λu = 0.08, λπ = 0.02,
βπ = 0.05. (4) Initialization Θ: It is common practice to
sample a zero-mean normal distribution with a small standard
deviation σ. We set σ = 0.1 in this paper.

11If not explicitly declared, GeoBPR is short for GeoBPR with assumption-a.



TABLE IV: Performance comparison where “*” means significant improvement in terms of paired t-test with p-value < 0.01,
and symbols ‘a’ and ‘b’ of the GeoBPR model denote our two assumptions, respectively.

Dataset Metrics Rand MP UCF MFM BPR NBPR GeoBPRb GeoBPRa Improve

Phoenix MAP 0.0012 0.0152 0.0187 0.0153 0.0310 0.0316 0.0095 0.0335 +8.06%∗

MRR 0.0043 0.0705 0.0939 0.1129 0.1244 0.1286 0.0507 0.1406 +13.02%∗

Las Vegas MAP 0.0016 0.0259 0.0372 0.0403 0.0419 0.0426 0.0167 0.0462 +10.26%∗

MRR 0.0055 0.0940 0.1422 0.1385 0.1467 0.1484 0.0702 0.1656 +12.88%∗
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Fig. 3: Performance comparison with respect to top-N values in terms of Pre@N and Rec@N.

Evaluation Metrics. In order to measure the quality of top-N
item recommendation task, we adopt four standard evaluation
metrics, namely Precision@N and Recall@N (denoted by
Pre@N and Rec@N respectively.) [7], Mean Average Preci-
sion (MAP) [14] and Mean Reciprocal Rank (MRR) [23]. For
each metric, we first calculate the performance of each user
from the testing data, and then obtain the average performance
over all users. We omit detailed descriptions for saving space.

B. Experimental Results

Summary of Experimental Results. Table IV and Figure 3
show the experimental results of each algorithm in terms
of the four ranking metrics. We highlight the results of
BPR and GeoBPR in boldface for comparison in Table IV.
The percentage in ‘Improve’ column represents the accuracy
improvement of GeoBPR relative to BPR. As shown, BPR,
NBPR and GeoBPR models perform much better than MP,
MFM and UCF, which demonstrates the effectiveness of
pairwise preference assumptions. Our approach outperforms
the other baseline methods in terms of all the metrics on both
datasets. In particular, our GeoBPR model achieves about 10%
significant improvement compared to the BPR model in terms
of MAP and MRR. The main reason is that BPR only learns
one ranking order between observed and non-observed POI
pairs, i.e. (i, j). While our GeoBPR model learns two orders:
rated POI i and nearby POI g which is unrated, i.e. r̂uig; both
unrated POIs g and j, but j is distant from all rated POIs, i.e.
r̂ugj . Intuitively, the assumption r̂uig holds more accurately
than r̂uij in real scenarios; in addition, sparsity problem seems
to be alleviated by the additional assumption r̂ugj . We can
thus see that the assumption of GeoBPR by injecting geo-
spatial preference is indeed more effective than that of simple
pairwise preference assumed in BPR. Interestingly, one may
observe that NBPR does not perform much better than BPR by
modeling a new prediction function, i.e. fusing geographical
neighborhood with matrix factorization. Our results potentially
imply that algorithms optimized for rating prediction do not
translate into accuracy improvements in terms of top-N item
recommendation.
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Fig. 4: Performance comparison with different µ
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Fig. 5: Performance comparison with different k

Impact of Neighborhood. Table IV shows the predic-
tion quality of GeoBPR with two opposite assumptions,
i.e. assumption-a and assumption-b (denoted by GeoBPRa,
GeoBPRb resp.). As stated in section V-A, assumption-b intu-
itively cannot hold due to the lack of frequency information,
we can see that GeoBPRb performs the worst over other
approaches except for the Random one. To further investigate
the contribution of geo-spatial preference, we propose using
different thresholds µ mentioned in section III-C. The results,
i.e. Pre@5 and Rec@512, are depicted in Figure 4. We
observe the general trends are, both metrics increase with
the increasing of threshold µ, when arriving at a certain

12The performance on other metrics follows similar trends.



threshold, the performance starts decreasing with a larger µ.
The reason is that the size of nearby POIs (g ∈ LGui) is
not as large as required for training the model13 when µ
is small (e.g. µ ∈ [50, 200]) (see Algorithm 1 and Table
I). Once the number of training samples is large enough,
the performance of GeoBPR keeps consistent with the ratio
value (P ′/P), i.e. the larger ratio the training samples have,
the better recommendation quality GeoBPR achieves. For
example, the ratio on Las Vegas dataset become smaller when
µ is larger than 600m, and accordingly the recommendation
accuracy degrades rapidly when µ increases. Furthermore, we
see GeoBPR always achieves better performance than BPR
on Phoenix dataset when µ in [100, 2000]; on both datasets,
it outperforms BPR when µ in [100, 600].

Impact of Factorization Dimensions. In this work, we
apply a matrix factorization (MF) as the scoring function for
GeoBPR (see section V-B). Thus it is important to investigate
the impact of factorization dimension k to the prediction
quality. As shown in Figure 5, the performance of BPR
and GeoBPR steadily rise with the increasing number of
dimensions, which keeps consistent with previous work, e.g.
[6][20]. Furthermore, GeoBPR consistently outperforms BPR
with the same number of dimensions on both datasets; in
particular, the performance of GeoBPR in 30 dimensions is
comparable with that of BPR in 100 dimensions.

VII. CONCLUSION

In this paper, we explored to leverage geographical influ-
ence to improve personalized POI recommendation. First, to
motivate this work, we conducted proximity data analysis on
two real-world datasets extracted from the Yelp Datasets and
observed that a user’s rated POIs tend to cluster together on
the map. Thus it is reasonable to argue that users are likely
to visit nearby places. Then, we presented a new pairwise
preference assumption and proposed a co-pairwise ranking
model (GeoBPR) by injecting the geo-spatial preference. The
intermediate proximity preference introduced by geographical
feedback leads to a more accurate interpretation than original
BPR in the setting of POI recommendation, and makes the
preference ordering of non-observed user-POI pairs possible
to be inferred. Due to the optimal balance of geographical
preference and latent factors, GeoBPR outperformed other
state-of-the-art factorization models. Both the theoretical and
empirical results indicated that GeoBPR was the right choice
for personalized POI recommendation task.
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