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VSE-fs: Fast Full-Sample
Visual Semantic Embedding

Songlin Zhai, Guibing Guo∗, Fajie Yuan, Yuan Liu, and Xingwei Wang

Abstract—The visual semantic embedding (VSE) aims to construct a joint embedding space between visual features and semantic
information, whereby classes can be well retrieved for a given image. However, VSE faces the computational challenge due to the large
scale image-class data and the constrained system processing power. To speed up model training, many researchers resort to different
sampling strategies by involving only a small portion of the classes at each training step. However, these methods are greatly biased
especially when the sampling distribution deviates from the true data distribution. In order to retain VSE models fidelity, we adopt the
regular full-sample in our algorithm. We also devise two separate optimization strategies to reduce time complexity, and derive more
effective updating rules. The experimental results on four real datasets demonstrate that our approach not only converges much faster
than the state-of-the-art sampling models, but also generates more accurate class retrieval.

Index Terms—Visual Semantic Embedding, Full Sample, Negative Sampling
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1 INTRODUCTION

C LASS retrieval for a given image becomes a research
hot spot to address the problem of automatically an-

notating images with relevant classes, which are often used
as keywords by search engines. However, there is a seman-
tic gap between the low-level image pixels (features) and
related high-level class content (semantics). Many research
works have attempted to solve the problem, such as Visual
Semantic Embedding (VSE) models [1], [2] to build a joint
embedding space between images and classes, and Neural
Network models (NN) [3] to automatically learn image
features and then classify images into multiple classes. In
practice, NN models have a large number of network pa-
rameters, and thus are usually computationally expensive
to train. Training a complicated model may take up to
several weeks even if being equipped with many power
machines (e.g., expensive GPUs). Besides, the information
of image raw pixels may not be available in some situ-
ations or datasets, causing the class retrieval task more
challenging. Whereas VSE models exactly aim to explore
the latent relations between images and classes, bypassing
the weaknesses of traditional NNs. Furthermore, VSE model
is also be easily extended by appending the image features
(see Section 3.4). Thus, our work follows the line of VSE
models, and try to build a better joint embedding space
with full sample without the consideration of image pixels
or textual information.

However, VSE models face the computational challenge
due to the large scale image-class data and the constrained
system processing power, which limit its application ca-
pacity. In detail, the bottleneck of training VSE models
lies in two parts: (1) the scoring inner-product operation

∗ Corresponding author

• Songlin Zhai, Guibing Guo, Yuan Liu and Xingwei Wang are with the
Software College, Northeastern University, China.

• Fajie Yuan is with Tencent computer system Co. Ltd, Shenzhen City,
Guangdong Province, China.

and (2) the huge number of images and classes. In order
to reduce time complexity, some previous research works
suggest to sample from class space, which later has become
a common practice by creating a sample of m < M classes
at each training step. Various sampling methods have been
proposed to alleviate the performance defect caused by the
imperfect sampler, including uniform sampling [4], static
sampling (word2vec) [5], dynamic sampling (WARP) [2],
and a state-of-the-art fast dynamic & adaptive sampling
(VSE-ens) [1]. However, sampling-based methods are biased
[6], i.e., it cannot converge to the same loss as full examples
- regardless how many update steps are taken. Generally,
there are two ways to mitigate this issue: (1) design a
complicated sampling distribution closer to the true data
distribution - which is either suboptimal or inefficient, or
(2) increase the sampling size, m – which is trivial but
costly. Note that there is little research work to study a more
efficient method to compute the relevance scores.

In this paper, we focus on the full-sample based learning
to retain VSE model’s fidelity which resolves the perfor-
mance defect of sampling-based methods, and meanwhile
adopt a least square loss function to preserve a determinate
analytic solution. To reduce the huge time complexity, we
propose two efficient transformation strategies to accom-
modate the whole data loss. Specifically, we propose a f -
separate transformation to reduce the time complexity of
computing score when update parameters. Furthermore, we
also conduct a positive separate (p-separate) transformation
to resolve the huge time complexity of full sample learn-
ing. The experimental results on four real-world datasets,
namely OpenImages1 [7], NUS-WIDE2 [8], IAPR-TC123 [9]
and Flickr4 demonstrate that our VSE-fs model trains 4.27
times faster than the start-of-art model (VSE-ens) on Open-
Images, 12.59 times on NUS-WIDE, 9.68 times on IAPR-

1. https://github.com/openimages/dataset
2. lms.comp.nus.edu.sg/research/NUS-WIDE.htm
3. http://www.imageclef.org/photodata
4. https://www.flickr.com/



TC12 and 19.19 times on Flickr, and produces significant
improvements on class retrieval accuracy in the meanwhile.

2 RELATED WORK

In this section we briefly review two negative sampling
strategies as well as three representative algorithms, which
will be used for performance comparison in Section 4.3.

2.1 Uniform Sampling
Pairwise learning to rank with a uniform sampling, also
referred to as Opt-AUC [4] criterion, is a popular way
to optimize VSE models. The aim of Opt-AUC is to rank
any positive (image, class+) pair from ground-truth higher
than a randomly sampled negative (image, class−) one:

score(image, class+) > score(image, class−)

where class+ and class− denote the positive and negative
class, respectively, also applied to the following discussion.

Although the uniform sampling of negative classes is
very efficient and only takes O(1) time, it converges much
slower and performs worse than other well-designed sam-
plers. This is because many sampled examples are not
informative and thus less effective for model training as
explained by [1].

2.2 Dynamic Sampling

On account of the accuracy defect of uniform sampler,
some dynamic samplers are proposed to better optimize
VSE models. Two state-of-the-art algorithms are shortly
reviewed as follows.

WARP [2]: (Weston et al. 2011) introduce a Weighted
Approximate-Rank Pairwise Loss, where the weighted rank
is implemented by a rejection sampler. That is, it will re-
peatedly draw negative classes until the score of a drawn
negative class meets the requirement:

score(image, class−) > score(image, class+).

However, WARP sampling is expensive to find the violated
negative examples due to the time-consuming traveling
operation on the whole non-positive class set which takes
O(TK) time (T and K are the average sampling trials and
the scoring computation steps respectively). What’s worse,
T will become much larger after several training iterations,
as most positive pairs are likely to have higher scores than
negative ones.

VSE-ens [1]: To solve the aforementioned issue of WARP
sampling, VSE-ens [1] is proposed to approximately and
efficiently estimate the rank of negative classes without
executing the scoring inner-product operation before each
stochastic gradient descent (SGD) update. That is, VSE-ens
aims to sample the item pairs that are most likely (maybe
not exactly) to meet the rejection requirement of WARP
sampling.

In summary, uniform sampler i.e. Opt-AUC [4] trains
VSE models with low time complexity but only reaches poor
performance. Dynamic sampler i.e. WARP [2] is capable of
solving the issue of poor performance (in uniform sampler)
but at the cost of high time complexity. Although the im-
proved dynamic sampler i.e. VSE-ens [1] can help relieve the

efficiency problem of WARP, sampling-based approaches in-
herently cannot take full advantage of all information in the
dataset, leading to performance loss to some extent. Thus, in
this paper we will introduce our VSE model (VSE-fs) with
efficient full-sample training in the following sections.

3 SCALABLE VSE MODEL

For the sake of discussion, we will first introduce a number
of notations in this paper. Given a set of image-class pairs
represented by D = {(i, c)}N×M , where i and c denote
an image and a corresponding class, respectively; N and
M are the number of images and classes, respectively. A
VSE model is to map images and classes into image em-
bedding space denoted by RI and class embedding space
denoted by RC , respectively. For an image i, it can be
denoted by an embedding vector vi ∈ RI , and similarly
a class c can be represented by vc ∈ RC . Hence, we use
VI

N×K ⊆ RI to denote the image embedding matrix and

take VC
M×K′

⊆ RC for the class embedding matrix, where
K and K

′
are the dimension of image and class embedding

matrix respectively. Moreover, we set K = K
′

to force
the mapping of images and classes into a joint embedding
space, whereby classes can be quickly retrieved for a given
image. Lastly, we use Ci as the set of classes associated with
image i, and Ic as the set of images labeled with class c,
where C denotes the ground-truth class set of all images
and I denotes the set of all images. Thus, the objective of
VSE is to learn proper embedding representations (VI and
VC ) of images and classes.

3.1 VSE-fs Model
Different from previous methods to sample from non-
positive classes, we propose a full-sample based model to
retain the fidelity of VSE models. The problem is that the
number of images for each class is extremely imbalanced
in full-sample learning. To resolve this issue, we propose a
weighting scheme (in Section 3.1.1) to take into account the
importance of different classes. Furthermore, to represent
images more accurately, we model an image (e.g. i) by the
combination of image embedding vector vi and the summa-
tion of related positive class embedding vectors

∑
c∈Ci

vc.
In summary, we derive a weighted least square loss function
to discriminate positive classes from non-positive ones. To
be specific, it is a summation of weighted residual error5,
defined as follows:

min loss︸ ︷︷ ︸
∀ i:N

=
∑
c∈Ci

wic(ξ
+
ic − ζic)

2

︸ ︷︷ ︸
positive part

+
∑
c/∈Ci

βcζ
2
ic︸ ︷︷ ︸

non-positive part

+reg (1)

where ξ+ic and ξ−ic denote the ground truth score of positive
and non-positive (i, c) pair respectively, where ξ−ic = 0 as
the image is not related with the non-positive class. ζic is
the relevant score of (i, c) pairs predicted by our VSE-fs
model which will be defined in Section 3.2. wic ∈ WN×M

is the positive weight for positive (i, c) pairs, accounting

5. Our optimization target pertains to unconstrained Quadratic Pro-
gram (QP), and is a least square approximation which has the determi-
nate analytic solution.



TABLE 1: The mean number of positive and non-positive
classes of images across four datasets.

Feature OpenImages NUS-WIDE IAPR-TC12 Flickr

Positive 8 8 4 5
Non-Positive 7,475 5,010 271 595
Proportion[ 1 / 934 1 / 626 1 / 68 1 / 119
[ The number of positive ones VS the number of non-positives ones.

for the co-occurrence frequency of image i and class c. βc
controls the contribution of non-positive classes to the loss
function. It is a class-specific weighting strategy elaborated
in Section 3.1.1. reg = λ (

∑N
i=1 ||vi||2 +

∑M
c=1 ||vc||2 ) is the

regularization term to avoid overfitting.

3.1.1 Weighting Scheme of Non-positive Classes
In four datasets, the number of images for each class is
extremely imbalanced, that is, some classes are ‘common’ or
‘popular’ while the others are ‘infrequent’ or ‘unpopular’. It is
probable that a ‘popular’ class is a true-negative one for an
image, if the image is not related with the class. Thus, we
should assign a higher weight for these true negative classes
and lower weight for those that may be positive. Inspired
by the weighting strategies of [10], we propose an adaptive
weighting strategy6, given by:

βc = β0
χαc∑M
c
′
=1
χα
c
′

where χc denotes the ‘popularity’ of this class across the
whole dataset and is defined by |Ic|/

∑M
c′=1 |Ic′ |; β0 controls

the overall strength of the weights. α is a nonlinear scale
factor to control the importance of non-positive weights
relative to the positive weights.

3.2 Scoring Strategy

The positive classes of a given image are valuable in mod-
elling this image by which we can get more accurate results
(experimental results are given in Section 4.5). Different
from previous research works [1], [2], we model an image
(e.g., i) by the combination of image embedding vector vi
and the summation embedding vectors of its associated
positive classes

∑
c∈Ci

vc to better capture the connections
between images and classes, defined by:

ζic = 〈vi + γpi,vc〉 − exclc (2)

where 〈·, ·〉 denotes the inner product operation between
two vectors, and γ ∈ [0, 1] controls the strength of the
injected class embedding vectors. We denote pi as the
extended embedding vector and define it as follows:

pi = |Ci|−
1
2

∑
c
′∈Ci

vc′

where pi ∈ PN×K is the summation of all positive class
embedding vectors for a given image i, and thus P is the
extended embedding matrix with the size of N × K and
|Ci|−

1
2 is the normalization term.

6. It is trivial to prove that χα is a monotone decreasing function with
respect to the scale factor α by taking the first and second derivation.
Thus, the scale factor is indeed an amplification coefficient.
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Fig. 1: f-separate Transformation where we use vi.. and vc.. to
denote the entries in image and class embedding matrix re-
spectively. When updating the 2-dimension factor of the image
or class embedding vector, the score of training pair (1, 2) can
be converted into a current dimension-invariant value ζ212 by
subtracting the element product (vi12 + γp12)v

c
22, which can be

pre-computed in O(1) time.

Additionally, exclc in Eq. 2 is used to exclude the class
embedding vector if pi contains the class in question. For-
mally, it can be defined as a piece-wised function as follows:

exclc =

{
γ |Ci|−

1
2 〈v

′
c,vc〉, c ∈ Ci

0, c /∈ Ci

where v
′
c is the excluded class embedding vector from pi

which denotes the cached embedding vector of class c after
last iteration and will not be updated in this iteration.

Given that our loss function is a quadratic convex
function (see Footnotes 5 and Eq. 1), we can derive the
optimization rules by directly setting the derivation of our
loss function to 0 with respect to vif , where f denotes
the f th dimension in an either image or class embedding
vector. Finally, the obtained image updating rule is given as
follows:

vif =

∑
c∈Ci

wicvcf (ξ
+
ic − ζic)−

∑
c/∈Ci

βcvcfζic

λ
(3)

3.3 Scalable Transformation
Eq. 3 summarizes the updating rules in element level which
takes O(K2NM) time of updating the whole image embed-
ding matrix. Specifically, the huge amount of time is cost
by the scoring operation and the summation in non-positive
part. In this section, we will propose two separate transfor-
mations to greatly alleviate the training time complexity.

3.3.1 f -separate Transformation for Scoring Operation
Our first observation regarding Eq. 3 is that one has to
perform the inner product operation (i.e., ζic) for each
parameter optimization (i.e., vif ), which merely takes O(K)
time. Although the scoring operation does not sound a
very time-consuming process in updating one element of an
embedding vector, it will quickly reach up to O(K2) time in
order to update the whole embedding vector, letting alone
the operation working on all the non-positive (i, c) pairs.
Thus, it is necessary to speed up the process. In fact, the
reason why we re-compute the score in updating another
dimension is that the element of current dimension is a part
of the scoring operation, and the score will change along
with the updating dimension.



Hence, the basic idea is to separate the current updating
dimension i.e. f from the score and cache the summation of
other f -irrelevant (dubbed f -separate) dimensions before
updating f dimension. Later, we can update the cache
before updating another dimension i.e. f + 1. In this way,
O(K2) time can be simply reduced to O(K). Hence, it is
easy to obtain the f -separate scoring function from Eq.2:

ζfic = ζic − vcf (vif + γpif ) + exclc (4)

where ζfic denotes the computation without f -dimension.
Thus, by pre-computing ζfic, we can compute ζic in O(1)

time to accelerate the training process. The time complexity
can be reduced from O(K2NM) to O(KNM) for updat-
ing image or class embedding matrix. We then apply the
f -separate strategy to Eq. 3, deriving the following new
updating rules:

vif =

∑
c∈Ci

wicvcf4scoreic −
∑
c/∈Ci

βcvcf (ζ
f
ic + γpifvcf )∑

c∈Ci
wicv2cf +

∑
c/∈Ci

βcv2cf + λ

(5)
where 4scoreic = ξ+ic − ζfic − exclc − γpifvcf for the sake

of simplicity.
Fig. 1 explains the idea of f -separate transformation.

Specifically, assume that we have 5 images and 10 classes
in the training dataset and set the embedding dimension
as 5. Suppose image 1 is related with classes { 1, 9, 10 },
the score ζ12 can be transformed into a 2-separate value
ζ212 by subtracting (vi12 +

∑
c′∈{1,9,10} v

c
c′2

)vc22, which can
be computed before updating the 2nd element in the image
embedding vector of image 1.

3.3.2 p-separate Transformation for Non-positive Part
The time complexity of Eq. 5 is smaller than the original
updating rules. However, the underline parts still need to
directly traverse the whole non-positive class set. Moreover,
as shown in Table 1, the number of non-positive classes is
very large and much larger than the number of positive
ones. In other words, the computational bottleneck now lies
in the summation of the non-positive classes, which almost
requires to traverse the whole class set.

To ameliorate the time complexity of updating rules,
the traverse learning over all non-positive classes can be
transformed as the residuals between all (i, c) pairs and the
whole positive (i, c+) pairs (relatively small number of item
pairs), referred to as p-separate transformation.

Firstly, we focus on
∑

c/∈Ci
βcv

2
cf , which can be reformu-

lated as: ∑
c/∈Ci

βcv
2
cf =

M∑
c=1

βcv
2
cf︸ ︷︷ ︸

image independent

−
∑
c∈Ci

βcv
2
cf

If we define HC = βV >C VC , where β = [β1, ..., βc] is the
weight vector of classes, the first term

∑M
c=1 βcv

2
cf can be

noted as hcff ∈ Hc, which is independent of the current up-
dating image embedding vector. Thus, we can pre-compute
this term before updating elements of the image embedding
vector. The time-consuming operation of summation in neg-
ative part can be transformed into a pre-computed time and
the summation in positive part time.

Additionally, we can further speed up the caching pro-
cess by only computing only half of entries in the cached
matrix since HC is a upper triangular matrix.

Algorithm 1: Fast Full-sample VSE-fs Model
Input: D, K , λ, positive and non-positive weights W ,

β0 and scale factor α
Output: Image and class embedding matrix VI , VC

1 for ∀i ∈ N, c ∈ Ci do
2 Compute ζic ← Eq. 2 I O(K|D|)
3 end
4 while Not Converged do
5 // Update the image embedding matrix ;
6 Update cache HC = βV >C VC I O(K2M) ;
7 for i ∈ 1→ N do
8 for k ∈ 1→ K do
9 Compute ζfic in Ci ← Eq. 4;

10 Update vif ← Eq. 6 I O(K + |Ci|) ;
11 Update score ζic in Ci ;
12 end
13 end
14 // Update the class embedding matrix ;
15 Update cache

HI = (γP + VI)
>(γP + VI) I O(K2N);

16 for c ∈ 1→M do
17 for k ∈ 1→ K do
18 Compute ζfic in Ic ← Eq. 4 ;
19 Update vcf I O(K + |Ic|);
20 Update score ζic in Ic ;
21 end
22 end
23 end
24 return VI and VC

Analogously, we can also derive pre-computed formula-
tion of ζfic mixed terms by applying the similar strategy as
follows:∑
c/∈Ci

βcvcf (ζ
f
ic + γvcfpif ) =∑

k 6=f

(vik + γpik)h
c
fk + γpifh

c
ff −

∑
c∈Ci

βcvcf (ζ
f
ic + γvcfpif )

Therefore, after applying p-separate transformation
strategy, the final updating rules of image embedding ma-
trix in element level can be re-written as follows:

vif =∑
c∈Ci
{wicvcf (ξ+ic − exclc)−4ωic(γv

2
cfpif + vcfζ

f
ic)} − termi∑

c∈Ci
4ωicv2cf + hcff + λ

(6)
where 4ωic = wic − βc, termi =

∑
k 6=f v

′
ikh

c
fk − pifhcff

for the sake of simplicity. Analogously, we can also derive
the updating rule of the entry in class embedding matrix by
applying these two separate strategies.

Algorithm 1 summarizes the accelerated full-sample VSE
model (VSE-fs). According to the updating rules, calculating
each ζfic requires the score of the corresponding training pair
(i, c), i.e., ζic. Thus, Lines (1-3) compute the initial score in
advance, which is used in the subsequent steps. Note that
although ζic changes when updating vif or vcf , it can be
updated synchronously by Line 11 or Line 20.



TABLE 2: Time complexity of all comparison models in each
training iteration, where T in WARP denotes the average sam-
pling trials for each SGD update. c1 (in VSE-ens) and c2 (in
Opt-AUC) are the constant coefficient of the time complexity
respectively with the relationship of c2 < c1 � T .

VSE-fs VSE-ens WARP Opt-AUC

O((N +M)K2 +K|D|) O(c1K|D|) O(TK|D|) O(c2K|D|)

3.4 Discussion
In Algorithm 1, updating an image embedding vector takes
O(K + |Ci|) time (Line 10). Thus, one VSE-fs iteration takes
O(K2N +K|D|) (|D| is the number of positive (i, c) pairs)
time for updating all image-related parameters (Line 7). The
overall time complexity for updating parameters of both
images and classes is O(K2(N +M) +K|D|). For the VSE-
ens model, it updates the class rank for every M log(M)
steps which takesO(const·K|D|) for every iteration. Table 2
summarizes the time complexity for all aforementioned
models, where c1 and c2 are the constant coefficient of VSE-
ens and Opt-AUC; T denotes the average sampling trials of
WARP. Besides, there is a relation with T � c1 > c2. Note
that (N +M)K2 has the same order of magnitude as K|D|
because (N +M)K is not always larger than |D|; that is,
for each iteration, our model has almost the same order of
time complexity as Opt-AUC and VSE-ens. Due to a smaller
constant coefficient, Opt-AUC model has a much shorter
training time compared with VSE-ens. Most importantly,
our VSE-fs model converges much faster because it takes
into account full samples rather than a training pair when
updating each parameter.

Additionally, we can also safely parallel the algorithm
by separating the updates of different images (or classes) —
allowing different workers to update the parameters with
disjoint sets of images (or classes) since the updating process
is independent with each other. Note that the updating
process of different dimensions (i.e. vif and vif+1) cannot
be paralleled, since the entry of current updating dimension
(i.e. f ) will have an influence on the updating process of
other dimensions (i.e. f + 1) by ζf+1

ic (see Eq. 6).
Although in this paper we aim to resolve the task of

visual semantic embedding without the content of images,
our proposed VSE-fs model can be easily applied to the
situations where those information is available. A straight-
forward manner is to reformulate the original scoring as:

ζic = 〈vi + γpi,vc〉 − exclc︸ ︷︷ ︸
VSE part

+ 〈Exi,vc〉︸ ︷︷ ︸
Visual part

where E and xi denote the transformation matrix and
image visual features extracted by advanced CNNs [3],
respectively. Besides, all of VSE models can be extended by
using this method, which also demonstrates the scalability
of VSE research field. However, it is beyond the discussion
of this paper, and we will leave it for future exploration.

4 EXPERIMENTS

4.1 Experimental Settings
4.1.1 Datasets
In our experiments, we adopt three popular image class
datasets, namely OpenImages [7], NUS-WIDE [8] and IAPR-

TABLE 3: Training time comparison on the three datasets, in
which the row of ‘Accelerate’ denotes the improvements of our
approach relative to the sampling model in question, and the
time indicates the elapsed time of each training iteration.

Model OpenImages NUS-WIDE Flickr IAPR-TC12

VSE-fs 6.14 m 32.93 s 10.31s 1.73 s

VSE-ens 32.33 m 447.49 s 208.11 s 18.47 s
Accelerate 4.27 x 12.59 x 19.19 x 9.68 x

WARP 216.39 m 1047.71 s 1010.56 s 34.33 s
Accelerate 32.24 x 30.82 x 97.02 x 18.84 x

Opt-AUC 9.91 m 85.86 s 75.88 s 8.10 s
Accelerate 0.61 x 1.61 x 6.36 x 3.68 x

TC12 [9]. All of them can be accessed publicly (see Footnotes
1∼3). Additionally, we crawl another image datasets from
Flickr using Flickr API. The original NUS-WIDE, IAPR-
TC12 and clawed Flickr datasets are used for both training
and testing. For OpenImages, we randomly sample a large
volume (around 1.5M) of (image, class) pairs from the
original OpenImages dataset in our experiments to reduce
the whole training time, since the volume of images in
original dataset has reached an astonishing scale (about 9M).
The resulting dataset contains 1,388,832 images and 7,483
classes. For each image, we preserve one (image, class) pair
for testing and the rest for training. In this way, we obtain
10,052,007 (image, class) pairs in the training set and the rest
1,388,832 in the test set.

4.1.2 Parameter Settings
We fix the number of latent factors asK = 128, and initialize
variables by a normal distribution N (0, 0.001). The other
parameters suggested by the original papers are adopted in
our experiments. Additionally, our method works without
learning rate, bypassing the well-known difficulty in tuning
stochastic gradient descent learners. Five popular ranking
metrics are adopted to measure the class retrieval accuracy,
including precision and recall (denoted by Pre@N, Rec@N),
mean average precision (MAP), normalize discounted cu-
mulative gain (NDCG) and area under the ROC curse
(AUC), where the cutoff N is set to 5 or 10. The detailed
metric definitions can be found in [1], which are omitted in
this paper due to space limitations.

4.2 Training Speed
Although our model takes advantage of full sample, we
stress that our model can be efficiently executed, and much
faster than the models with negative sampling. Besides, the
cached terms can be further optimized by the symmetry
of cache matrices. Moreover, our model can be efficiently
paralleled to train (different workers update different image
or class embedding vectors) which will dramatically reduce
the training time. Due to the indeterminacy of negative
sampling results, baseline models must be performed in
single thread. Thus, we just run a single thread to train VSE-
fs model for fair efficiency comparison. The per iteration
training time for these models is presented in Table 3, where
m and s denote minutes and seconds respectively. Ad-
ditionally, due to the time-consuming sampling operation



TABLE 4: The ranking accuracy of all methods, where values ‘(+ )’ indicate the percentage of improvements (symbol % is omitted)
our approach achieves relative to the corresponding baseline model.

Model Pre@5 Rec@5 Pre@10 Rec@10 MAP NDCG AUC

OpenImages
VSE-fs 0.0869 0.4303 0.0558 0.5579 0.2846 0.3492 0.7788
VSE-ens 0.0837 (+3.82) 0.4183 (+2.87) 0.0557 (+0.18) 0.5572 (+0.13) 0.2744 (+3.72) 0.3410 (+2.40) 0.7783 (+0.06 x)
WARP 0.0706 (+23.09) 0.3529 (+21.93) 0.0474 (+17.72) 0.4741 (+17.68) 0.2315 (+22.94) 0.2886 (+21.00) 0.7369 (+5.69 x)
Opt-AUC 0.0471 (+84.50) 0.2355 (+82.72) 0.0346 (+61.27) 0.3465 (+61.01) 0.1461 (+94.80) 0.1928 (+81.12) 0.6730 (+15.72 x)

NUS-WIDE
VSE-fs 0.0313 0.1567 0.0227 0.2273 0.0967 0.1272 0.6135
VSE-ens 0.0278 (+12.59) 0.1391 (+12.65) 0.0198 (+14.65) 0.1982 (+14.68) 0.0893 (+8.29) 0.1144 (+11.19) 0.5990 (+2.42 x)
WARP 0.0107 (+192.52) 0.0533 (+194.00) 0.0083 (+173.49) 0.0830 (+173.86) 0.0336 (+187.80) 0.0448 (+183.93) 0.5415 (+13.30 x)
Opt-AUC 0.0035 (+794.29) 0.0177 (+785.31) 0.0028 (+710.71) 0.0279 (+714.70) 0.0113 (+755.75) 0.0151 (+742.38) 0.5139 (+19.38 x)

Flickr
VSE-fs 0.1267 0.6323 0.0732 0.7316 0.4456 0.5152 0.8647
VSE-ens 0.1143 (+10.85) 0.5716 (+10.62) 0.0696 (+5.17) 0.6957 (+5.16) 0.3887 (+14.64) 0.4621 (+11.49) 0.8453 (+2.30 x)
WARP 0.1251 (+1.28) 0.6256 (+1.07) 0.0726 (+0.83) 0.7262 (+0.74) 0.4375 (+1.85) 0.5070 (+1.62) 0.8609 (+0.44 x)
Opt-AUC 0.1001 (+26.57) 0.5039 (+25.48) 0.0664 (+10.24) 0.6635 (+10.26) 0.3078 (+44.77) 0.3925 (+31.26) 0.8288 (+4.33 x)

IAPR-TC12
VSE-fs 0.0602 0.3011 0.0440 0.4413 0.1940 0.2501 0.7242
VSE-ens 0.0598 (+0.67) 0.2990 (+0.70) 0.0436 (+0.92) 0.4364 (+1.12) 0.1836 (+5.66) 0.2427 (+3.05) 0.7126 (+1.63 x)
WARP 0.0595 (+1.18) 0.2976 (+1.18) 0.0428 (+2.80) 0.4278 (+3.16) 0.1796 (+8.02) 0.2380 (+5.08) 0.7086 (+2.20 x)
Opt-AUC 0.0543 (+10.87) 0.2713 (+10.98) 0.0414 (+6.28) 0.4136 (+6.70) 0.1629 (+19.09) 0.2212 (+13.07) 0.7011 (+3.29 x)

of WARP model, we manually set the maximal number
of sampling trials as 500 for OpenImages dataset in the
training process. The results in Table 3 are based on this
setting. Opt-AUC has an approximate per-iteration training
time compared with VSE-fs because of the simple random-
sampling strategy.

4.3 Retrieval Performance

Table 4 summarizes the retrieval performance of all the
comparison models, where the best results of each model
are reported. Generally, our model achieves the best per-
formance among these models across different datasets and
evaluation metrics. Specifically, the results reported on four
datasets are very consistent and justify the correctness of our
experiments. Opt-AUC produces the poorest performance,
suggesting the value of advanced sampling strategies over
uniform sampling. VSE-ens beats WARP and Opt-AUC to
a large extent, which is consistent with the results reported
by [1] on OpenImages, NUS-WIDE and Flickr. Even though,
our approach with full-sample outperforms VSE-ens, which
has a carefully designed negative sampler. To sum up, it
is valuable to optimize VSE models with full non-positive
examples, and it provides significant performance gains
relative to negative sampling approaches.

4.4 Memory Usage

The majority of memory usage in our VSE-fs model lies in
three parts: (1) the two derived cached matrices HI and HC

(see Line 6 and Line 15 in Algorithm 1) which have the size
of K ×K ; (2) the positive weight matrix (see wic ∈WN×M

in Eq. 1) which has the size of |D| since it is unnecessary to
store the weights of all (i, c) pairs; (3) the negative weights
βc with the size of M (see Eq. 1).

Fig. 2 (a) illustrates the memory usage of the four com-
parison models on OpenImages. The results show that the
memory usage of VSE-fs model is slightly higher than VSE-
ens model while the WARP and Opt-AUC use the least
memory. The rightmost bar denotes the memory usage of
image and class embedding matrices which is the basic
memory usage of VSE models. We omit the details in NUS-
WIDE, Flickr and IAPR-TC12 since they share the similar
effects. However, although VSE-fs has a high memory us-
age, RAM is not the bottleneck any more for training the
model nowadays because of the low price of RAM, and
it is a commonplace to run model on large RAM servers,
in which most modern operating systems have excellent
memory management strategy, and many third-party tools
could be used to optimize the memory footprint. Further-
more, our model learning can be easily paralleled (discussed
in Section 3.4), in which the embedding matrices can be
stored in different servers and the memory usage of a single
computer can be further reduced.

4.5 Effect of Parameters β0, γ and α
Parameter β0 controls the strength of the non-positive exam-
ples in our VSE-fs model (see Eq. 1). It has direct influence
on the retrieval performance. We tune its value from 1 to
512 exponentially stepping by 2n (n is the number of steps),
and then finer-tune with a smaller interval to search the
best settings. The results are shown in the left sub-figure
of Fig. 2 (b) in terms of Pre@5 on OpenImages. We omit
the details in other metrics and other datasets (for space
saving) since they follow similar trends. It indicates that a
proper setting of parameter β0 is important to achieve the
best performance, while smaller or larger values may lead
to poor performance. In fact, the best settings of parameter
β0 are 16, 3, 128 and 8 for OpenImages, NUS-WIDE, IAPR-
TC12 and Flickr, respectively.
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Fig. 2: (a). Memory usage of four comparison models on OpenImages. (b). Effects of the parameters β0, γ and α on OpenImages
in terms of Precision@5.

Parameter γ accounts for the strength of the extended
vector pi in scoring function (see Eq. 2) with the range in
[0, 1]. Our new scoring function will turn to the ordinary
scoring by setting γ = 0. We tune γ from 0 to 1 to find the
best results as shown in the middle sub-figure of Fig. 2 (b)
in terms of Pre@5 on OpenImages. The experimental results
demonstrate that our scoring function gains improvements
of 1.52 x on OpenImages compared with the ordinary scor-
ing (i.e., γ = 0) and the optimal setting of γ is 0.01. Note
that the retrieval performance dramatically decreases when
setting γ = 1, which is consistently worse than the results
of γ = 0 on OpenImages. One possible explanation is that
high portion of pi in scoring function (vi+γpi) may disturb
the optimization of image and class embedding matrices. In
other words, the impact of class embedding vectors vc will
way overweight that of image embedding vectors vi in the
score, which may result in the issue of under-fitting. Note
that the best settings of parameter γ are 0.02, 0.03 and 0.04
on NUS-WIDE, Flickr and IAPR-TC12 respectively, which
also share the similar effects above mentioned.

Lastly, parameter α indicates the significant level of the
non-positive weights related to the positive weights. We also
set it in the range of [0, 1] to find the best value. The results
of tuning α on OpenImages are given in the right sub-figure
of Fig. 2 (b). The experimental results shows that our VSE-
fs model reaches the best performance with a proper value
between 0 and 1, which outperforms the settings of both
α = 0 and α = 1. Therefore, the weighting strategy of our
model is superior to the uniform weighting strategy (α = 0)
as well as the basic ‘popularity’ based weighting strategy
(α = 1). To be specific, our VSE-fs model reaches the best
performance with α = 0.35 on OpenImages. Note that the
result of α = 1 is better than that of α = 0, implying that
‘popularity’ based weighting strategy works better than the
basic uniform weighting strategy. In addition, the optimal
settings of parameter α are 0.85, 0.43 and 0.52 on NUS-
WIDE, Flickr and IAPR-TC12, respectively.

5 CONCLUSION

In this paper, we studied the efficiency problem of visual-
semantic embedding (VSE) models. We analytically pointed
out that traditional approaches to sample negative examples
may lead to performance loss due to the potential miss-
ing of informative examples. Thus, we proposed a novel
VSE model with full-sample optimization (named VSE-fs)

rather than only a sampled portion of negative examples.
To reduce time complexity and boost model training, we
devised two separate-transformation strategies, aiming to
simplify the computation of inner-product operations and
the traversing over all non-positive sample. The experimen-
tal results on four datasets demonstrated that our approach
can obtain significant performance gains in terms of both
accuracy and convergence, comparing with state-of-the-art
models with negative sampling.
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