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Users engage with recommender systems and provided or left feedback.
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Figure: https://www.researchgate.net/figure/The-sequential-recommendation-process-After-the-RS-recommends-an-item-the-user-gives_fig4_311513879
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Our PeterRec
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UserlD: 007xx

Gender: Male

Age: 25-35

Profession: programmer
Life Status: unmarried
Health Status: healthy and positive

Tag: straight, beauty, Chinese, Al, Kung fu, sports
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 Recommendation Background:

(1) Content & Context Recommendation

(2) Session-based Recommendation: recommending the next item based on previously recorded user

Interactions.
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Why sequential recommendation?
e Short-videos (Tik Tok, Weishi, Kuaishou)
Music (Tencent music, Yahoo! Music) & News

Movie clips  (You Tube, Netflix)

ﬁ\lonSeq Rec vs. Seq Rec] _

e  Only Static vs. Dynamic Preference

*  Manual Feature Engineering vs. Manual-free Features

*  Supervised Learning vs. Unsupervised (self-supervised) Learning

user vector

item vector
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Transfer Learning Background

TL aims to extract the knowledge from one or more source tasks and applies the knowledge to a target task.

Traditional ML VS Transfer Learning
e |solated, single task learning: 71 e Learning of a new tasks relies on
o Knowledge is not retained or the previous learned tasks:

accumulated. Learning is performed o Learning process can be faster, more
W.0. considering past learned accurate and/or need less training data
knowledge in other tasks

Leaming Learning
Dataset 1 = | System Dataset 1 0=>|  System
Task 1 Task 1

g

Figure: A Comprehensive Hands-on Guide to Transfer Learning with Real-World Applications in Deep Learning, online



Transfer Learning (TL) vs Multi-task Learning (MTL)

1raining Testing

Transfer Learning -
Multi-task Learning [[TaSiT - [TaskNT]  [ESSICHT - [TASIONT

TL vs MTL
Transfer Learning Multi-task Learning « Two-stage training vs joint training

* One objective vs multiple objectives
- - * Care only target vs. care all objectives
:

[1] ICML 2018: Advances in transfer, multitask, and semi-supervised learning, online
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Transfer Learning (TL) for Recommender System (RS)

Motivation:

« User representation may be generic,
since their preference tends to be
similar across different recommendation
task. That is, user's engagement in
previous platforms may be important
training signals for other systems.

« Traditional ML models usually fail to
when modeling new or cold users due
to lack of interaction data

[1] figure is from online, url is missing

Traditional ML in
multiple domains
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Transfer Learning (TL) for Recommender System (RS)

Task description
Source data: (u, x*),where x* = {x{, x¥,...x}},

where x{ denotes the t—th tnteracted ttem of user u
Target data: (u, Y) where Y is the supervise Label in the target dataset

Example
Source data: user’s watching activities in Tencent RR Browser
Target data: user’'s watching activities tn Kandian, but users are cold or new here

or user’s profile labels e.g. age, gender, lifestatus, etc,

UserlD: 007XX

Gender: Male

Age: 25-35

Profession: programmer
Life Status: unmarried
Health Status: healthy and positive

Tag: straight, beauty, Chinese, Al, Kung fu, sports
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PeterRec Architecture

NextltNet-style neural network
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(a)pre-tratning on QR Browser data

Label (e.g., gender)

T

| (v)
()
A A A A

(b) fine-tuning on user profile dataset

NextitNet: A Stmple Convolutional Generative Network for Next ttem Recommendation. WSPM2019, Yuaw et al,



What can be done by PeterRec

* Cold-start problem, e.g., ads rec
* User profile prediction, e.g., gender prediction

N

UserlD: 007Xx

Gender: Male

Age: 25-35

Profession: programmer
Life Status: unmarried
Health Status: healthy and positive

Tag: straight, beauty, Chinese, Al, Kung fu, sports
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Problems we meet when a number of tasks are required.
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Taking inspiration from grafting

A: branch of plum

B: Tree of peach

C: Insertion
D: grow together

i1 1

x1 x?. x3 x4

Pretrained model

Pretrained modlel is treated as the peach Tree,



Grafting for plants. A: branch of plum vs MP

B: Tree of peach vs pretrained model
C: Insertion vs insertion
D: grow together vs finetunin
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Parameter-Efficient Transfer from Sequential Behaviors for User Modeling and Recommendation, Yuan et al SIGIR
2020
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Results.

s pretraining necessary?
PeterZero: wo pretraining

PeterRec:  with pretraining
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Results.

Table 3: Performance comparison (with the non-causal CNN archi-
tectures). The number of fine-tuned parameters (# and v) of Peter-
Rec accounts for 9.4%, 2.7%, 0.16%, 0.16%, 0.16% of FineAll on the five
datasets from left to right.

Model ColdRec-1 | ColdRec-2 | GenEst | AgeEst | LifeEst

FineCLS 0.295 0.293 0.900 0.679 0.606
FinelLast 0.330 0.310 0.902 0.682 0.608
FineAll 0.352 0.338 0.905 0.714 0.615

PeterRec 0.351 0.339 0.906 0.714 0.615




What can be done by Peterrec

UserlD: 007xx

Gender: Male

Age: 25-35

Profession: programmer
Life Status: unmarried
Health Status: healthy and positive

Tag: straight, beauty, Chinese, Al, Kung fu, sports
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Example : if we have the video wateh be- haviors of a teenager, we may know
whether he has depression or propensity for violence by PeterRec without
resorting to much fea- ture engineering and human-labeled data.







