
Optimizing Factorization Machines for Top-N
Context-Aware Recommendations

Fajie Yuan1(B), Guibing Guo2, Joemon M. Jose1, Long Chen1, Haitao Yu3,
and Weinan Zhang4

1 University of Glasgow, Glasgow, UK
f.yuan.1@research.gla.ac.uk, {Joemon.Jose,Long.Chen}@glasgow.ac.uk

2 Northeastern University, Shenyang, China
guogb@swc.neu.edu.cn

3 University of Tsukuba, Tsukuba, Japan
yuhaitao@slis.tsukuba.ac.jp

4 Shanghai Jiao Tong University, Shanghai, China
wnzhang@sjtu.edu.cn

Abstract. Context-aware Collaborative Filtering (CF) techniques such
as Factorization Machines (FM) have been proven to yield high preci-
sion for rating prediction. However, the goal of recommender systems
is often referred to as a top-N item recommendation task, and item
ranking is a better formulation for the recommendation problem. In
this paper, we present two collaborative rankers, namely, Ranking Fac-
torization Machines (RankingFM) and Lambda Factorization Machines
(LambdaFM), which optimize the FM model for the item recommen-
dation task. Specifically, instead of fitting the preference of individual
items, we first propose a RankingFM algorithm that applies the cross-
entropy loss function to the FM model to estimate the pairwise prefer-
ence between individual item pairs. Second, by considering the ranking
bias in the item recommendation task, we design two effective lambda-
motivated learning schemes for RankingFM to optimize desired ranking
metrics, referred to as LambdaFM. The two models we propose can work
with any types of context, and are capable of estimating latent interac-
tions between the context features under sparsity. Experimental results
show its superiority over several state-of-the-art methods on three public
CF datasets in terms of two standard ranking metrics.

Keywords: Context-aware · Learning to rank · Factorization
machines · RankingFM · LambdaFM

1 Introduction

Commonly used recommendation techniques such as collaborative filtering (CF)
have gained much attention in recent years. However, typical collaborative filter-
ing (CF) methods mainly focus on mining interactions between users and items
without considering the additional context which the users or items are associ-
ated with [21]. For example, in a music recommender system, the location of the
c© Springer International Publishing AG 2016
W. Cellary et al. (Eds.): WISE 2016, Part I, LNCS 10041, pp. 278–293, 2016.
DOI: 10.1007/978-3-319-48740-3 20

Optimizing Factorization Machines 279

user and the time of the user-item interaction may be important contextual fac-
tors when the user listened to a song. Ignoring the contextual information may
result in considerable degradation in recommendation performance. Currently,
there are some hybrid approaches performing pre- or post-filtering of the input
data to make standard methods context-aware. Although such ad-hoc strategies
may work in practice, they suffer from two drawbacks [10,21]: (1) pre- or post-
filtering the data based on the context can potentially lead to information loss
about the interactions between different contextual variables; (2) all steps in the
process need supervision and manual tuning. On the other hand, a variety of
specialized models designed for specific tasks, such as TimeSVD [11] and Tensor
Factorization [18], are able to leverage contextual information, but they rely on
very strict assumptions, which make them cumbersome to incorporate different
types of context and usually require complicated inference algorithms. There-
fore, the models capable of integrating any types of context are more practical,
as well as more elegant in theory. So far, two of the most flexible and effec-
tive methods for context modelling are Multiverse Recommendation [10] and
Factorization Machines (FM) [17]. Unfortunately, Multiverse Recommendation
relies on Tucker decomposition, which leads to O(km) computational complexity,
where k is the dimensionality of factorization and m is the number of predic-
tor variables involved [21]. In contrast, FM enjoys linear complexity (both in k
and m), which gives fast learning and prediction with contextual features.

It has been recognized that both Multiverse Recommendation and FM were
originally designed for the rating prediction task based on explicit user feed-
back [6,21]. However, it is a commonplace that in real-world scenarios most
observed feedback is not explicit but implicit [20]. Typical implicit feedback
includes the number of purchases, clicks, played songs, etc., and thus it is much
more accessible, because the user does not have to express his feelings explic-
itly [19]. As a result, implicit feedback is often one-class, i.e., only positive class
is available. In addition, for item recommendation task, the recommendation
accuracy near the top of the ranked list is usually more important than that at
the end of the list, known as the top-N (item) ranking task. Some recent work
has shown that rating prediction algorithms optimized for error metrics such
as RMSE (root mean squared error) empirically do not guarantee accuracy in
terms of top-N item recommendations [6].

To address the above drawbacks, we propose to optimize FM for the item
recommendation task based on implicit feedback, which is also knowns as One-
Class Collaborative Filtering (OCCF). More specifically: Firstly, we present
RankingFM, which adopts FM as a ranking function to model the interactions
between context features, and apply it to the Learning-to-Rank (LtR) approach
by using pairwise cross-entropy (CE) loss. We propose to optimize the Rank-
ingFM by widely used stochastic gradient descent method. Secondly, inspired
by LambdaRank [15], we explore to further improve the top-N recommendation
performance of RankingFM by adapting the original lambda weighting function
with two alternative sampling schemes, referred to as LambdaFM1. Lastly, we

1 A full version of LambdaFM has been published at CIKM’16 [26].

280 F. Yuan et al.

carry out a set of experiments on three public datasets. The results indicate that
our proposed methods (i.e., RankingFM and LambdaFM) achieve superior rec-
ommendation quality in terms of two standard ranking metrics. In particular,
LambdaFM largely outperforms a bunch of strong baselines for top-N recom-
mendations.

2 Related Work

Learning-to-Rank. Recently, Learning-to-Rank (LtR) has been attracting
broad attention due to its effectiveness and importance in machine learning
community. There are two major approaches, namely, pairwise [1,18] and list-
wise approaches [3,15]. Specifically, the pairwise ranking usually treats an objec-
tive pair as an ‘instance’ in learning. For example, Herbrich et al. [8] employed
the approach and utilized the SVM technology to build a classifier, referred to
as Ranking SVM; Burges et al. [1] adopted cross-entropy and gradient descent
to train a Neural Network model, known as RankNet. Empirically, pairwise
methods perform better than traditional pointwise methods. However, typical
pairwise objective functions are devised to maximize the AUC metric, which
is clearly position-independent. But for item recommendation, the recommen-
dation quality is highly position-biased because the accuracy near the top of
the ranked list is usually more important. In this regard, pairwise loss functions
might still be a suboptimal scheme for the top-N item ranking task. In contrast,
listwise approaches address the problem more directly because the models are
usually formalized to optimize a specific ranking measure. Generally, it is dif-
ficult to directly optimize the ranking metrics because they are either flat or
non-differentiable. One way to solve this problem is to propose smooth approxi-
mations of the target measures. For example, Shi et al. proposed smooth variants
of MAP [24] and Mean Reciprocal Rank (MRR) [25] to optimize ranking perfor-
mance. The other way is the lambda-based approach, such as LambdaRank [15]
and LambdaMart [2], which is designed to add listwise information into pairwise
implementation to bypass the major challenges of traditional listwise methods.

Factorization Models. Recommender systems (RS) have two characteris-
tics that distinguish themselves from conventional LtR (e.g., Ranking SVM,
RankNet) in web search: (1) The user-item matrix is usually highly sparse e.g.,
≥95 % in most scenarios where the conventional LtR is likely to fail [16,21];
(2) RS aim at personalization, which means each user should receive one per-
sonalized ranking, whereas the conventional LtR learns only one ranking for a
query, which, in effect, is non-personalization [20]. To tackle the above prob-
lems, researchers have proposed factorization models for recommendation tasks.
Specifically, a series of matrix factorization (MF) based algorithms have been
devised in the literature, e.g., Singular Value Decomposition (SVD) [11], Tensor
Factorization (TF) [22], Probability Matrix Factorization (PMF) [23]. In partic-
ular, Rendle [16] unified factorization based models by developing a general pre-
dictor called Factorization Machines (FM), and showed that FM worked in linear
time and can mimic several state-of-the-art MF models by feature engineering.

Optimizing Factorization Machines 281

Furthermore, FM demonstrates high recommendation accuracy for rating pre-
diction by mining the latent interactions between pairwise features in sparse
settings [16]. However, it has been pointed out that the least square based loss
for rating prediction is suboptimal for item recommendation task [6,18]. Accord-
ingly, a variety of ranking-based MF models have been proposed, e.g., WRMF [9]
(pointwise), PITF [22] & RTF [18] (pairwise) and CLiMF [25] (listwise), which,
however, were designed for specific tasks (e.g., tag recommendation) and cannot
handle general scenarios of context-aware recommendations.

In our work, we adapt FM to RankingFM by applying the pairwise cross-
entropy loss, and then explore to improve the way of pairwise learning by opti-
mizing a rank biased performance measure. In contrast to the previous work,
our proposed method is a general context-aware algorithm that is capable of
effectively optimizing item ranking performance.

3 Ranking Factorization Machines

In this section, we first briefly review Factorization Machines (FM), and then
elaborate our RankingFM algorithm. Lastly, the stochastic gradient descent
(SGD) is applied to train the RankingFM model.

3.1 Factorization Machines

FM is a state-of-the-art pointwise prediction model, which is capable of captur-
ing all nested interactions up to order d among n input variables in x with a
factorized representation. For a detailed description, please refer to Rendle [17].
The FM model of order d = 2 is defined as:

ŷ(x) = w0 +

n∑

i=1

wixi

︸ ︷︷ ︸
linear

+

n∑

i=1

n∑

j=i+1

〈vi, vj〉xixj

︸ ︷︷ ︸
polynomial

(1)

where the model parameters Θ = {w0, w1, ..., wn, v1,1, ..., vn,k} to be estimated
are: w0 ∈ R,w ∈ R

n,V ∈ R
n×k, and 〈·, ·〉 denotes the dot product of two vectors

of size k:

τi,j ≈ 〈vi, vj〉 =
k∑

f=1

vi,f · vj,f (2)

A row vector vi of V is the i-th variable with k factors. The linear term of
the FM model is identical to a linear regression model. The polynomial term
models the interaction between the i-th and j-th variables by using a factorized
parametrization 〈vi,vj〉 instead of an independent parameter τi,j . In [16], it
shows that FM can be computed in linear runtime O(kn) because Eq. (1) can
be reformulated as:

ŷ(x) = w0 +
n∑

i=1

wixi +
1

2

k∑

f=1

((n∑

i=1

vi,fxi

)2 −
n∑

i=1

v2
i,fx2

i

)
(3)

282 F. Yuan et al.

3.2 RankingFM Framework

FM is recognized as being very successful for a variety of prediction problems
with variables each of which may have interactions with one another. Specifically,
pointwise error loss functions are adopted in the latent factor model for rating
prediction. However, as previously mentioned, the pointwise optimization results
in a suboptimal solution for the item recommendation task, which is known as a
ranking task. Thus we aim to extend FM to a Ranking FM approach by applying
pairwise LtR techniques.

Consider that the learning algorithm is given a set of pairs of samples (a, b),
with known probabilities P ab that sample a will be ranked higher than sam-
ple b. Also, there exists an input vector x ∈ R

n, where n is the number of
features. Meanwhile there is an output space of ranks represented by label
y = {y1, y2, ..., yL} with the number of ranks L. We denote the modeled pos-
terior P (xa � xb) by Pab. Then sa = ŷ(xa) (i.e., Eq. (1)) and sab = sa − sb =
ŷ(xa)− ŷ(xb). Finally, the deviation between Pab and P ab can be formulated by
cross-entropy (CE) loss [1]:

Cab =C (sab)=−P ab log Pab − (1 − P ab

)
log (1 − Pab) (4)

where the two outputs sa, sb of the models are mapped into a probability using
sigmoid function, i.e., Pab = 1

1+e−(sa−sb)
.

In the case of Recommender Systems (RS)2, for a given user u ∈ U , let
Sab ∈ {0,±1} be defined as 1 if u prefers item a over item b, −1 if opposite, and
0 if u has the same preference of them. P ab is assumed to be deterministically
known from the ground truth, so that P ab = 1

2 (1+Sab). By combining the above
equations, Cab becomes:

Cab =
1

2
(1 − Sab) (sa − sb) + log

(
1 + e−(sa−sb)

)
(5)

The difference of sa and sb can be computed with the computational complexity
of O(kn) by applying Eq. (3):

sab =
n∑

i=1

wi(xa
i − xb

i)−
1
2

k∑
f=1

(n∑
i=1

v2
i,fxa

i
2−

n∑
i=1

v2
i,fxb

i

2)

+
1
2

k∑
f=1

((n∑
i=1

vi,fxa
i

)2 − (n∑
i=1

vi,fxb
i

)2
) (6)

The objective of CE is to train the scoring function (i.e., FM) so that the loss
of ordering probability estimation can be minimized by:

C =
∑

a,b∈Ds

Ca,b +
∑
θ∈Θ

γθ||θ||2 (7)

where Ds represents all the pair collections, || · ||2 is the Frobernius norm and
γθ is a hyper-parameter for the L2 regularization term.
2 User-item pairs function similarly as query-url pairs in the conventional LtR task.

Optimizing Factorization Machines 283

3.3 Optimization Methods

We adopt the stochastic gradient descent (SGD) to optimize the loss function.
By differentiating Eq. (7), the parameter θ can be updated:

θ ← θ − η

(
∂Cab

∂θ
+ γθθ

)
(8)

where
∂Cab

∂θ
=

∂Cab

∂sa

∂sa

∂θ
+

∂Cab

∂sb

∂sb

∂θ
(9)

∂Cab

∂sa
and ∂Cab

∂sb
are the learning weights (i.e., the strength for updating θ), defined

as:
∂Cab

∂sa
=

(
1 − Sab

2
− 1

1 + e(sa−sb)

)
= −∂Cab

∂sb
(10)

According to Eqs. (8)-(10), we obtain:

θ ← θ − η

((1 − Sab

2
− 1

1 + e(sa−sb)

)
(
∂(sa − sb)

∂θ
) + γθθ

)
(11)

According to the property of Multilinearity [17], the gradient of FM can be
derived:

∂ŷ(xa)

∂θ
=

⎧
⎪⎨

⎪⎩

1 if θ is w0

xa
i if θ is wi

xa
i

∑n
j=1 vj,fxa

j − vi,fxa
i
2 if θ is vi,f

(12)

By combining Eqs. (11)-(12), we have:

vi,f ← vi,f − η
((1 − Sab

2
− 1

1 + e(sa−sb)

)

(n∑
j=1

vj,f (xa
i xa

j − xb
ix

b
j)−vi,f (xa

i
2 − xb

i

2
)
)

+ γvi,f
vi,f

) (13)

wi ←wi−η
((1 − Sab

2
− 1

1 + e(sa−sb)

)
(xa

i − xb
i) + γwiwi

)
(14)

We show the general learning process of RankingFM in Algorithm1, which
can handle multi-class ranking tasks, e.g., Trec Contextual Suggestion3 and con-
ventional LtR scenarios. Nevertheless, as explained in Sect. 1, in most real-world
scenarios of CF, negative examples and unknown positive examples are mixed
together and hardly to be distinguished [14], known as one-class collaborative
filtering (OCCF). It can be seen the algorithm has O(|U||A||B|) training triples,
where |A| and |B| represent the size of observed and unobserved actions by the
user u ∈ U , so we have A ∪ B = I,A ∩ B = ∅, where |I| represents the number
of items. That is, we need to compute all the full gradient in each update step,
which is infeasible because |B| is usually huge in practice. To solve this problem,

3 https://sites.google.com/site/treccontext/.

https://sites.google.com/site/treccontext/

284 F. Yuan et al.

Algorithm 1. RankingFM Learning

1: Input: Training dataset, regularization parameters γ, learning rate η
2: Output: Θ = (w,V)
3: Initialize Θ: w ← (0, ..., 0); V ∼ N (0, 0.1);
4: repeat
5: for a, b with different labels given by u do
6: sa = ŷ(xa), sb = ŷ(xb)
7: for f ∈ {1, ..., k} do
8: for i ∈ {1, ..., n} ∧ xi �= 0 do
9: Update vi,f according to Eq. (13)
10: end for
11: end for
12: for i ∈ {1, ..., n} ∧ xi �= 0 do
13: Update wi according to Eq. (14)
14: end for
15: end for
16: until convergence
17: return Θ

Algorithm 2. RankingFM Learning for OCCF

1: Uniformly draw u from U
2: Uniformly draw a from A
3: Uniformly draw b from I\A

it is natural to propose a sampling scheme (e.g., bootstrapping [20]), which, on
one hand, can make the best use of unobserved feedback for the learning; on the
other hand, helps to reduce the runtime of the algorithm. The slightly revised
RankingFM for OCCF is shown in Algorithm2, i.e., Line 5 in Algorithm1 is
replaced by Line 1–3 of Algorithm 2. In this case, xa denotes the observed posi-
tive sample vector, while xb denotes the unobserved sample vector.

In terms of the computational complexity, it can be seen that the complexity
of Eqs. (13) and (14) is O(kn) and O(n) respectively. Thus RankingFM also has
a linear computational complexity for each training pair. Moreover, for a CF
scenario, most elements xi in a vector x are zero. For example, let N(x) be the
number of non-zero elements in the feature vector x and N(x) be the average
number of non-zero elements in all vectors. We can see that N(x) 	 n under
huge sparsity, i.e., the complexity becomes O(kN(x)) in the CF settings.

4 Efficient Lambda Samplers

4.1 Sampling Analysis

RankingFM is made to work quite well due to the design of the pairwise CE
loss function, which is fine if that is the desired loss. However, typical pair-
wise loss functions are devised to maximize the AUC metric, which is clearly
position-independent. For item recommendations, the recommendation quality
is highly position-biased because high accuracy near the top of a ranked list
is more important to users. To solve this challenge, lambda-based approaches
(e.g., LambdaRank [7,15]) have been presented by incorporating ranking bias
into pairwise comparison. Inspired by this idea, we may design a similar weight-
ing term ξa,b for further optimization of RankingFM, which is hereafter called

Optimizing Factorization Machines 285

Lambda Factorization Machines (LambdaFM for short). ξa,b
4 is designed to

incorporate the size of change of a specific ranking measure by swapping two
items (i.e., a and b) of this pair with different relevance levels, the way of which
is called lambda (or λ). The new learning weight is defined as:

λab =
(

1 − Sab

2
− 1

1 + e(sa−sb)

)
ξab (15)

where ξab can be the difference of any ranking measure, e.g., NDCG, Reciprocal
Rank (RR), or Average Precision (AP), computed by:

ξab =

⎧
⎪⎪⎨

⎪⎪⎩

|N(2la − 2lb)
(

1
log(1+ra) − 1

log(1+rb)

)
| if ξa,b is |�NDCGab|

| 1
R

[
n+1
rb

− m
ra

]
+
∑ra−1

k=rb+1
lk
k | if ξa,b is |�APab|

| 1
rb

− 1
r | if ξa,b is |�RRab| and rb < r ≤ ra

(16)

where N is the reciprocal of maximum DCG for a user; la and lb are levels of
relevance for item a and b, respectively; ra and rb are the rank positions of a
and b, respectively; n and m are the number of relevant items at the top rb and
the top ra positions, respectively; lk is the binary relevance label of the item at
rank position k, i.e., 1 for relevance and 0 otherwise, R is the number of relevant
items; r is the rank of the top relevant item in the ranking list. Note that the
above equation of RRab holds only when rb < r ≤ ra, otherwise there is no
RR gain. We find that the above implementation is reasonable for multi-class
scenarios in typical LtR tasks but impractical in OCCF settings. The reason is
that to calculate ξab it requires to compute scores of all items using Eq. (3) to
obtain the rank, i.e., ra and rb in Eq. (16). For typical IR tasks, the candidate
documents for a query in training datasets have usually been limited to a small
size (e.g., 1000) because of query filtering [27]. However, for recommendation
with implicit feedback, the size of candidate items is usually very huge (e.g., 10
million) as all unobserved items should be considered as candidates. Thus, the
computational complexity before the update of each training pair has becomes
O(kn|I|). In other words, the original lambda implementation for LambdaRank
is not suitable for OCCF settings [26].

To bypass this complexity issue, we devise two efficient lambda-based sam-
pling schemes in the followings. Assume we have an ideal lambda function λab,
if we have a sampling scheme that generates the training item pairs with the
probability proportional to λab/(1−Sab

2 − 1
1+e(sa−sb)) (just like ξab), then we can

have almost equivalent training models. Further, we give an example of a ranked
list (with implicit feedback) to show which item pairs should be assigned with
higher sampling weights, where +1 and −1 are positive and unobserved items,
respectively.

Rank Order :

ξ81︷ ︸︸ ︷
−1, −1, +1, −1, −1, −1, −1, +1︸ ︷︷ ︸

ξ86

,−1,−1

4 The work in [26] only adopted NDCG for the analysis of lambda whereas we here
consider multiple measures.

286 F. Yuan et al.

According to Eq. (16), we calculate that ξ81 is 0.42, 0.54 and 0.67 when ξ81 is
�NDCG, �AP and �RR respectively, and that ξ86 is 0.02, 0.04 and 0 when ξ81

is �NDCG, �AP and �RR respectively. Obviously, ξ81 is always larger than
ξ86 regardless of the ranking of the positive item and which ranking measure
we employ. This implies ξ81 is likely to be a more informative5 training pair
(compared with ξ86) if the unobserved item b has a higher ranking position.
Based on this insightful finding, we believe the item pairs whose unobserved
item has a higher rank should be drawn with higher probability. This is because
the top ranked unobserved items hurt the ranking performance more than those
with lower ranked positions [27,28]. With the intuitive observation and above
analysis, we devise two simple yet effective sampling schemes to further optimize
RankingFM for top-N item ranking.

4.2 Lambda-Based Learning Schemes

Scheme I. According to the above analysis, we argue that the item pair (8, 1) is
supposed to be sampled with higher probability than the (8, 6) pair. In addition,
we observe that the value of s81 is smaller than that of s86 because

s81 = ŷ(x8) − ŷ(x1)

s86 = ŷ(x8) − ŷ(x6)

ŷ(x1) > ŷ(x6)

(17)

The above observation suggests that we should sample more item pairs with
small preference difference, such as s81. We thus propose an intuitive learning
scheme with a dynamic utility function ρ(u, a, b) to judge whether a (u, a, b)
triple contains an informative training pair (or a good negative item) such that
swapping the positions of a and b could lead to a larger change of a desired rank-
ing loss. The lambda-motivated learning scheme is shown in Algorithm3, where
ρ is a sigmoid function. Hereafter we denote the new algorithm (replacing Line 5
of Algorithm 1 with Algorithm 3) as LFM-I. It can be clearly seen that a smaller
sab will contribute to a larger utility ρ(u, a, b). In terms of the computational
complexity, the complexity to calculate the original ξab is O(kN(x)|I|), while
the complexity of Algorithm 3 is O(kN(x)T), where T is the size of sampling
trials. In general, we have T 	 |I| in the beginning of the training and T < |I|
when the training reaches convergence. The reason is because in the beginning,
the elements of matrix V are initialized by a standard normal distribution with
mean 0 and variance 0.1 (see Algorithm 1), and thus the distribution of sab also
follows an approximate normal distribution with mean 0. In this case, it is quick
to find an unobserved item that meets the condition (i.e., ρrand ≤ ρ(u, a, b)) as
most possible values of ρ(u, a, b) are around 0.5. After several training round,
most observed items are likely to ranked higher than the unobserved items

5 In the followings, we refer to a training pair (a,b) as an informative pair if ξab is
larger after swapping a and b, the unobserved item b is called a good or informative
item.

Optimizing Factorization Machines 287

Algorithm 3. Lambda Learning Scheme I (LFM-I)

1: Uniformly draw u from U
2: Uniformly draw a from A
3: repeat
4: Uniformly draw b from I\A
5: Generate a random variable ρrand(u, a, b) ∈ [0, 1]

6: Calculate the utility function ρ(u, a, b) = e−sab

1+e−sab

7: until ρrand ≤ ρ(u, a, b)

Algorithm 4. Lambda Learning Scheme II (LFM-II)

1: Require: Unobserved item set I\A, parameter ρ and m, scoring function ŷ(·)
2: Sample a rank r from the power law distribution pr(r(b)) ∝ (1

r(b)+1)2ρ, ρ ∈ [0, 1], where r(b)

(starting from 0) is the rank of item b, and ρ is a coefficient that can be tuned for the
optimal results. Note that LFM-II will reduce to RankingFM when ρ = 0.

3: Uniformly draw b1,...,bm from I\A
4: Compute ŷ(xb1),...,ŷ(xbm), and then sort b1,...,bm by descending order of ŷ(xb1),...,ŷ(xbm)
5: Return one item b, which is currently ranked on the r-th position.

(i.e., sab > 0), and thus ρ(u, a, b) is likely to be smaller than 0.5, which will
lead to a bit larger T . However, it is impossible that all positive items are
ranked higher than unobserved items, so in general we still have T < |I| with
ρrand(u, a, b) ∈ [0, 1].

Scheme II. According to Sect. 4.1, a straightforward sampling scheme with
the same training effect of the original lambda can be implemented by calculat-
ing scores of all items to obtain the possible ranks, and then oversample higher
ranked unobserved items. Unfortunately, this learning scheme has the same com-
putational complexity with the original lambda strategy, which is clearly infea-
sible in practice. To overcome this issue, we first employ a uniform sampling
to select m candidates. Then we compute the scores of these candidate items
to achieve possible rank orders, and sample the rank by a power-law distribu-
tion pr(r) (In practice, pr(r) can be replaced with other distributions, such as
exponential and linear distributions as long as pr(r) meets the condition that
assigns larger sampling weight to top ranked unobserved items.). Because the
first sampling is uniform, the sampling probability density for each item has
almost equivalent effect with that from the original (expensive) global sampling.
The proposed sampler is shown in Algorithm 4. We refer to RankingFM with the
seconding learning scheme as LFM-II. The complexity before performing each
pairwise comparison reduces to O(mkn + m log m), where m is often set to a
small value (e.g., m = 20, 50). Therefore, by implementing scheme II, we are also
able to find an efficient way to bypasses the expensive computational complexity.

5 Experiments

We conduct a set of experiments to evaluate the top-N recommendation accuracy
of RankingFM and LambdaFM, compared to several state-of-the-art methods.

288 F. Yuan et al.

5.1 Settings

We use three real-world CF datasets to verify the performance of our proposed
methods, namely Libimseti.cz6 (user-user pairs, where the users recommended
as daters are regarded as items here), Lastfm7 (user-music-artist tuples) and
Yahoo8 (user-music-artist-album tuples). In order to speed up the experiments,
we follow the common practice as in [5] by randomly sampling a subset of users
from the Libimseti and Yahoo datasets, and a subset of items from the Lastfm
dataset. Table 1 summarizes the statistics of the three datasets used in this
work. We evaluate the results of top-N item recommendations by two standard
metrics, namely, Precision@N and Recall@N (denoted by Pre@N and Rec@N,
respectively) [12], where N is the number of recommended items. Details about
the two metrics are omitted for saving space.

In our experiments, we compare our methods with four powerful baseline
methods: Most Popular(MP) [20], Factorization Machines(FM) [17], Bayesian
Personalized Ranking with matrix factorization (BPR) [20], Pairwise Interac-
tion Tensor Factorization (PITF)9 [22]. Note we adapt FM for the top-N rec-
ommendation task by binarizing rating values10 (denoted as FMB). Since the
frequency of a user listening to a song (i.e., relevance feedback) can be obtained
from the Lastfm dataset, we also recommend songs by leveraging such informa-
tion (denoted as FMF11). Note that the frequency information has a large range
compared with ratings (e.g., [1, 5] interval). For example, a user may listen to a
song in hundreds of times. In this paper, we employ a trivial function 1

1+f−1 to
map the frequency into [0.5, 1), where f represents the frequency. Besides, for
a fair comparison, we also exploit the same bootstrap sampling as in BPR to
make use of the large number of unobserved items.

All factorization models use a factorization dimension of k = 30. Results for
k = 10, 50, 100 give consistent conclusion but are omitted due to space limita-
tions. In terms of η and γθ, we apply the 5-fold cross-validation to find optimal

Table 1. Basic statistics of datasets.

DataSets #Users #Items #Records Density Rsize Csize #Artists #Albums

Libimseti 5000 82444 642454 0.16 % 128.49 7.79 - -

Lastfm 983 60000 246853 0.42 % 251.12 4.11 25147 -

Yahoo 2450 124346 911466 0.29 % 372.03 7.33 9040 19851

The “Rsize” and “Csize” columns are the average number of records (e.g., ratings) for
each user and for each item respectively.

6 http://www.occamslab.com/petricek/data/.
7 http://dtic.upf.edu/∼ocelma/MusicRecommendationDataset/lastfm-1K.html.
8 http://webscope.sandbox.yahoo.com/catalog.php?datatype=r\&did=2.
9 Due to lack of contexts, PITF is not applicable to the Libimseti dataset.

10 It is a standard way to solve the one-class problem in CF [14].
11 FMF is identical to FMB in the other datasets, since the frequency of all observed

actions is 1.

http://www.occamslab.com/petricek/data/
http://dtic.upf.edu/~ocelma/MusicRecommendationDataset/lastfm-1K.html
http://webscope.sandbox.yahoo.com/catalog.php?datatype=r&did=2

Optimizing Factorization Machines 289

values for BPR. For PITF, our results show that it performs best with the same
η and γθ of BPR. For FM (FMB and FMF), we apply the same method to tune
η and γθ individually; For RankingFM and LambdaFM, we use the same η and
γθ with BPR for comparison. Specifically, η is set to 0.01 on the Libimseti and
Yahoo datasets, and 0.08 on the Lastfm dataset; γθ (including γwi

, γvi,f
) is set

to 0.01 on Libimseti dataset, and 0.05 on Lastfm and Yahoo datasets. Note that
we find that all FM based models perform well enough by just using polynomial
term (see Eq. (1)). ρ ∈ [0, 1] is specific for LFM-II, which is discussed later.

5.2 Results

Accuracy Analysis. Figure 1(a–f) shows the top-N recommendation accu-
racy of all algorithms on the three datasets. First, we clearly observe that our
proposed RankingFM (RFM) largely outperforms the original FM model (i.e.,
FMB), which empirically indicates the pairwise approach outperforms the point-
wise approach with the common 0/1 interpretation [20]. The reason is because
the two algorithms have the same scoring function but only differ in loss func-
tions: FMB applies the pointwise square loss, while RFM uses the pairwise CE
loss for optimization. Second, the proposed LambdaFM (LFM-I, LFM-II) con-
sistently outperforms other methods in terms of both ranking metrics. This is
because LambdaFM (1) directly optimizes the ranking metrics by the design of
two lambda-based sampling schemes (vs. BPR, PITF, FMB, FMF and RFM);
(2) estimates more accurate ordering relations between candidate items by

Fig. 1. Performance comparison w.r.t. top-N values, i.e., Pre@N (P) and Rec@N (R).
ρ is fixed to 0.8 for LFM-II, and m is fixed to 50.

290 F. Yuan et al.

Fig. 2. Parameter tuning for LFM-II w.r.t. Pre@5 (P) and Rec@5 (R). ρ ∈ {0, 0.2,
0.4, 0.6, 0.8, 1.0}, m = 50.

incorporating additional contextual variables (e.g., artists and albums) (vs. BPR
and PITF). Third, we find that RFM achieves almost the same results with BPR
and PITF on the Libimseti and Lastfm datasets. The reason is because all the
three approaches exploit the pairwise loss function but with different predic-
tion functions. FM (from RFM) is identical to matrix factorization (from BPR)
with user-item feature vector and tensor factorization (from PITF) with user-
item-artist feature vector. In other words, RFM is able to mimic state-of-the-art
ranking algorithms (i.e., BPR and PITF) by feature engineering. Fourth, FMF
performs much better than FMB on the Lastfm dataset. This indicates that a
user’s preference to a song can be inferred more accurately by leveraging play-
ing times information. The intuition is that the more times she played a music
track, the higher preference she expresses implicitly. Several other insights can
be obtained in Fig. 1 but are omitted for space reasons.

Tuning ρ. Figure 2 illustrates the impact of ρ for learning scheme II in terms
of Pre@5 and Rec@512. First, by assigning a larger ρ, it is easy to find LFM-
II noticeably outperforms RFM. The better results indicate that the lambda-
motivated sampler (scheme II) works effectively to deal with the suboptimal
results of pairwise ranking. Note LFM-II is equivalent to RFM when ρ = 0
according to Algorithm 4. Second, the performance of LFM-II on all three
datasets increases with the growth of ρ. In particular, on the Libimseti dataset,
the performance achieves the optimal value when ρ = 0.8, and starts to decrease
when ρ = 1.0. The reason is because only several top ranked items have the
12 The results w.r.t. other top-N values are consistent, but are omitted for saving space.

Optimizing Factorization Machines 291

Fig. 3. Performance comparison w.r.t. Pre@5 (P) & Rec@5 (R) by adding context. ρ
is fixed to 0.8, and m is fixed to 50 for LFM-II. (u, i) is a user-item (i.e., music) pair
and (u, i, a) is a user-item-artist tuple in (a-d); (u, i, a, a) is a user-item-artist-album
tuple in (c) and (d).

chance to be selected as candidates for the pairwise comparison when ρ = 1.0,
and in this case, many unobserved items will not be seen by the learning algo-
rithm, which probably leads to relatively worse performance because of insuf-
ficient training samples. On the other side, its performance has not obviously
decreased when ρ is set to 1.0 on the Lastfm and Yahoo datasets, which sug-
gests that (1) LFM-II may work well even by picking the top from m randomly
selected items; (2) the performance is expected to be improved further by setting
a larger sampling size (i.e., m)13.

Impact of Context. We compare the performance changes of RankingFM and
LambdaFM by gradually adding additional contextual variables. First, Fig. 3
(a-d) indicates that both RankingFM and LambdaFM with (u, i, a) noticeably
outperform that with (u, i) tuples on both datasets. Second, we can see Rank-
ingFM and LambdaFM with (u, i, a, a) tuples outperform that with (u, i, a)
tuples from Fig. 3(c-d). The intuition behind is that a use’s preference to a music
track can be inferred more accurately by taking into account of the artist and
album information. Hence, we argue that in general by adding useful context fea-
tures, our models are able to obtain significant recommendation improvements.

6 Conclusion and Future Work

In this paper, we have introduced two ranking predictors, namely Rank-
ingFM and LambdaFM. In contrast to other CF algorithms, RankingFM and
LambdaFM are general context-aware recommendation algorithms that are able
to incorporate any types of context information. Besides, we design two intu-
itive sampling schemes for LambdaFM, with which LambdaFM is made more
reasonable for optimizing item ranking in OCCF settings. Our experiments on
three public CF datasets show that RankingFM and LambdaFM performs bet-
ter than several state-of-the-art CF methods. In particular, LambdaFM (with

13 Note that a larger sampling size m will result in a larger computational complexity.

292 F. Yuan et al.

two proposed sampling schemes) demonstrates superior ranking performance in
the top-N item recommendation task, reflected in two standard ranking metrics.

For future work14, we plan to (i) develop more advanced samplers to improve
LambdaFM without negative effects on efficiency; (ii) investigate the generaliza-
tion of the suggested lambda strategies on other well-known pairwise loss func-
tions, e.g., hinge Loss [8], exponential loss [4] as well as fidelity loss [13] (iii)
investigate the performance of both RankingFM and LambdaFM for traditional
multi-class ranking tasks, such as web search and Trec Contextual Suggestion.

References

1. Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., Hullen-
der, G.: Learning to rank using gradient descent. In: ICML, pp. 89–96 (2005)

2. Burges, C.J.: From ranknet to lambdarank to lambdamart: An overview
3. Cao, Z., Qin, T., Liu, T., Tsai, M., Li, H.: Learning to rank: from pairwise approach

to listwise approach. In: ICML, pp. 129–136 (2007)
4. Chen, W., Liu, T.-Y., Lan, Y., Ma, Z.-M., Li, H.: Ranking measures and loss

functions in learning to rank. In: NIPS, pp. 315–323 (2009)
5. Christakopoulou, K., Banerjee, A.: Collaborative ranking with a push at the top.

In: WWW, pp. 205–215 (2015)
6. Cremonesi, P., Koren, Y., Turrin, R.: Performance of recommender algorithms on

top-n recommendation tasks. In: RecSys, pp. 39–46 (2010)
7. Donmez, P., Svore, K.M., Burges, C.J.: On the local optimality of lambdarank. In:

SIGIR, pp. 460–467 (2009)
8. Herbrich, R., Graepel, T., Obermayer, K.: Support vector learning for ordinal

regression (1999)
9. Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback

datasets. In: ICDM, pp. 263–272 (2008)
10. Karatzoglou, A., Amatriain, X., Baltrunas, L., Oliver, N.: Multiverse recommen-

dation: n-dimensional tensor factorization for context-aware collaborative filtering.
In: RecSys, pp. 79–86 (2010)

11. Koren, Y.: Collaborative filtering with temporal dynamics, pp. 89–97 (2010)
12. Li, X., Cong, G., Li, X.-L., Pham, T.-AN., Krishnaswamy, S.: Rank-GeoFM: a

ranking based geographical factorization method for point of interest recommen-
dation. In: SIGIR, pp. 433–442 (2015)

13. Tsai, M., Liu, T., Qin, T., Chen, H., Ma, W.: Frank: a ranking method with fidelity
loss. In: SIGIR, pp. 383–390 (2007)

14. Pan, R., Zhou, Y., Cao, B., Liu, N.N., Lukose, R., Scholz, M., Yang, Q.: One-class
collaborative filtering. In: ICDM, pp. 502–511 (2008)

15. Quoc, C., Le, V.: Learning to rank with nonsmooth cost functions. In: Advances
in Neural Information Processing Systems 19, pp. 193–200 (2007)

16. Rendle, S.: Factorization machines. In: ICDM, pp. 995–1000 (2010)
17. Rendle, S.: Factorization machines with libFM. TIST 3, 57:1–57:22 (2012)
18. Rendle, S., Balby Marinho, L., Nanopoulos, A., Schmidt-Thieme, L.: Learning

optimal ranking with tensor factorization for tag recommendation. In: SIGKDD,
pp. 727–736 (2009)

14 We would refer the interested reader to [26] for a detailed analysis about LambdaFM.

Optimizing Factorization Machines 293

19. Rendle, S., Freudenthaler, C.: Improving pairwise learning for item recommenda-
tion from implicit feedback. In: WSDM, pp. 273–282 (2014)

20. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian
personalized ranking from implicit feedback. In: UAI, pp. 452–461 (2009)

21. Rendle, S., Gantner, Z., Freudenthaler, C., Schmidt-Thieme, L.: Fast context-aware
recommendations with factorization machines. In: SIGIR, pp. 635–644 (2011)

22. Rendle, S., Schmidt-Thieme, L.: Pairwise interaction tensor factorization for per-
sonalized tag recommendation. In: WSDM, pp. 81–90 (2010)

23. Salakhutdinov, R., Mnih, A.: Probabilistic matrix factorization. In: NIPS 20, pp.
1257–1264 (2008)

24. Shi, Y., Karatzoglou, A., Baltrunas, L., Larson, M., Hanjalic, A., Oliver, N.:
TFMAP: optimizing map for top-n context-aware recommendation. In: SIGIR,
pp. 155–164 (2012)

25. Shi, Y., Karatzoglou, A., Baltrunas, L., Larson, M., Oliver, N., Hanjalic, A.:
CLiMF: learning to maximize reciprocal rank with collaborative less-is-more fil-
tering. In: RecSys, pp. 139–146 (2012)

26. Yuan, F., Guo, G., Jose, J., Chen, L., Yu, H., Zhang, W.: Lambdafm: learning
optimal ranking with factorization machines using lambda surrogates. In: CIKM
(2016)

27. Zhang, W., Chen, T., Wang, J., Yu, Y.: Optimizing top-n collaborative filtering
via dynamic negative item sampling. In: SIGIR, pp. 785–788 (2013)

28. Zhong, H., Pan, W., Xu, C., Yin, Z., Ming, Z.: Adaptive pairwise preference learn-
ing for collaborative recommendation with implicit feedbacks. In: CIKM, pp. 1999–
2002 (2014)

	Optimizing Factorization Machines for Top-N Context-Aware Recommendations
	1 Introduction
	2 Related Work
	3 Ranking Factorization Machines
	3.1 Factorization Machines
	3.2 RankingFM Framework
	3.3 Optimization Methods

	4 Efficient Lambda Samplers
	4.1 Sampling Analysis
	4.2 Lambda-Based Learning Schemes

	5 Experiments
	5.1 Settings
	5.2 Results

	6 Conclusion and Future Work
	References

