
Improving Negative Sampling for Word Representation using
Self-embedded Features

Long Chen
University of Glagow

Glasgow, UK
long.chen@glasgow.ac.uk

Fajie Yuan∗
University of Glagow

Glasgow, UK
f.yuan.1@research.gla.ac.uk

Joemon M Jose
University of Glagow

Glasgow, UK
joemon.jose@glasgow.ac.uk

Weinan Zhang
Shanghai Jiao Tong University

Shang Hai, China
wnzhang@sjtu.edu.cn

ABSTRACT
Although the word-popularity based negative sampler has shown
superb performance in the skip-gram model, the theoretical mo-
tivation behind oversampling popular (non-observed) words as
negative samples is still not well understood. In this paper, we start
from an investigation of the gradient vanishing issue in the skip-
gram model without a proper negative sampler. By performing
an insightful analysis from the stochastic gradient descent (SGD)
learning perspective, we demonstrate that, both theoretically and
intuitively, negative samples with larger inner product scores are
more informative than those with lower scores for the SGD learner
in terms of both convergence rate and accuracy. Understanding this,
we propose an alternative sampling algorithm that dynamically se-
lects informative negative samples during each SGD update. More
importantly, the proposed sampler accounts for multi-dimensional
self-embedded features during the sampling process, which essen-
tially makes it more effective than the original popularity-based
(one-dimensional) sampler. Empirical experiments further verify
our observations, and show that our fine-grained samplers gain
significant improvement over the existing ones without increasing
computational complexity.
ACM Reference Format:
Long Chen, Fajie Yuan, Joemon M Jose, and Weinan Zhang. 2018. Improving
Negative Sampling for Word Representation using Self-embedded Features.
InWSDM 2018: The Eleventh ACM International Conference on Web Search
and Data Mining, February 5–9, 2018, Marina Del Rey, CA, USA. ACM, New
York, NY, USA, 9 pages. https://doi.org/10.1145/3159652.3159695

1 INTRODUCTION
In recent years, there has been a surge of work proposed to rep-
resent words as dense vectors, using various training methods
∗The first two authors contributed equally to this work and share the first authorship.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WSDM 2018, February 5–9, 2018, Marina Del Rey, CA, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5581-0/18/02. . . $15.00
https://doi.org/10.1145/3159652.3159695

inspired from neural-network language modeling [3, 5, 40]. These
representations, referred to as “neural embedding" or “word em-
bedding", have been shown to perform well in a variety of natural
language processing (NLP) tasks, such as named entity recognition
[15, 31], sentiment analysis [28, 37] and question answering [48].

One of the most popular word embedding techniques is the skip-
gram model. Given a corpus of target words and their context, it
aims to predict the probability of observing a context word con-
ditioned on a target word by sliding a symmetric window over a
subsampled training corpus. One of the major difficulties of these
language models is that one needs to compute activation functions
by summing over an entire vocabulary, which is often millions
of words in scale. To reduce the computational cost, researchers
often use two lines of methods, one is hierarchical softmax [27],
another is noise contrastive estimation (or alternatively, negative
sampling) [11]. While useful in general, the effectiveness of such
methods largely depends on the assumption that oversampling fre-
quent words would lead to better performance since they are more
informative than less frequent ones [11]. However, in fact, infre-
quent words may also carry important information. In addition, a
simple global and static sampling method such as popularity-based
sampling strategy cannot effectively handle the cases where words
are represented by a large number of embedded features.

To tackle the aforementioned problems, we first show that a
not well-designed (e.g. random) sampler would easily result in the
gradient vanishing problem during the parameter learning process,
especially when the corpus size is very large and the words are long
tail distributed. Hence, most SGD updates have no effect, which
leads to slow convergence for the learning algorithm. Both the-
oretical and experimental analysis reveals that popularity-based
negative sampling is able to alleviate the vanishing gradient issue.
However, our analysis also shows that popularity-based negative
sampling can only achieve suboptimal performance for two reasons:
(1) non-observed context words with high popularity (frequency)
are often irrelevant to the target word; (2) popular words are sam-
pled without considering the dynamic change of parameters in the
training process. Hence, in this paper we propose a non-popularity
sampling strategy, termed as Adaptive Sampler, which makes use-
ful of multi-dimensional semantic and syntactic information, and
samples top ranked context words by considering both embedding
variables and the current state of SGD learner. On two real-world
corpora, the proposed algorithm can significantly outperform the

https://doi.org/10.1145/3159652.3159695
https://doi.org/10.1145/3159652.3159695

original word2vec baseline. Furthermore, our method has an amor-
tized constant runtime without increasing time complexity of the
original word2vec [23].

The rest of this paper is organized as follows. We firstly intro-
duce the related work in Section 2. Section 3 formally defines the
problem of word embedding with adaptive sampling. Section 4 sys-
tematically presents the proposed word-embedding sampler. The
experimental results and analysis are reported in Section 5. Finally,
we present our conclusion and future work in Section 6.

2 RELATEDWORK
Neural network language models [22, 24, 43] have attracted a lot of
attention recently given their dense and learnable representation
form and generalization property, as a contrast to the traditional
bag-of-words representations. Word2vec skip-gram [23] (cf. Sec-
tion 3) is arguably the most widely used word embedding models
today. However, the computation of output vector (softmax layer)
represents the probability of the context word and is the size of the
entire vocabulary [6], which is computationally prohibitive (even
with the recent advance of GPU-accelerated computing). This has
been a thorny problem ever since Bengio’s seminal work of neural
network language model [3].

There are several ways to tackle this challenge. A commonway is
hierarchical softmax, which was first proposed by Mnih and Hinton
[25], where a hierarchical tree is constructed to index all the words
in a corpus as leaves for the prediction of the normalized probability
of the target class [27]. Peng recently proposed an incremental
training method which is able to learn the softmax tree faster than
global training [30] while the performance of this model is still
comparable to the original version.

Another popular way to reduce the computational cost is simply
selecting only a small fraction of the output’s dimensions, which
are either randomly or heuristically chosen. The reconstruction
sampling of Dauphin et al. [8], the efficient use of biased importance
sampling in [20], the adoption of noise contrastive estimation [11]
in Mnih and Kavukcuoglu [26] all belong to this category. The most
famous one in this line of work is arguable negative sampling (cf.
Section 3), which is the simple version of noise contrastive estima-
tion (NCE) that randomly samples the words not in the context to
distinguish the observed data from the artificially generated noise.
Empirically, negative sampling generally outperforms hierarchical
softmax, especially for frequent words [23]. The reason is that hier-
archical softmax builds a tree over the whole vocabulary, and the
leaf nodes representing rare words will inevitably inherit their par-
ent vector representations in the tree, as a result, they are affected
by other frequent words in the corpus. Thus, we choose negative
sampling as baseline in this work due to its superior performance.

Recently, the use of approximate maximum-inner-product Func-
tion has become popular [8, 41] to select a good candidate subset,
which is somewhat similar to our idea. But our approach upgraded
the inner product function into a rank-invariant function, and thus
is computationally more efficient than these alternatives. In addi-
tion, they use the function for the task of image recognition [44]
and recommender systems [33, 46, 47], while the feasibility and
effectiveness of this approach for the task of word embeddings is
still largely unknown.

More generally speaking, matrix factorization (MF) model is
also employed to reduce the dimension of a co-occurrence matrix.
Context-distribution smoothing MF [19] and global MF [31] (also
known as GloVe) all belong to this category. While generally ef-
fective, MF models actually employ negative sampling implicitly
[18], and thus these two techniques tend to perform quite similarly
for most downstream NLP tasks [2]. To the best of our knowl-
edge, this paper is the first attempt to investigate SGD update at
a finer-grained level with embedding features, and propose to use
an adaptive sampler. Furthermore, the proposed samplers can be
easily adopted to other more complex factorization models, such
as tensor factorization [39], even though we only implement them
on word2vec in this paper.

3 PRELIMINARY
First we formally introduce several concepts and notations. Thenwe
shortly recapitulate the skip-gram1 model with negative sampling
(SGNS). The novel contribution of this section is to show the the-
oretical motivation behind oversampling popular (non-observed)
words as negative samples.

3.1 Continuous Skip-gram Model
In [23], words are trained with an unlabelled corpus of words
w1,w2, ...,wn (usually n is about millions) and the context for word
wi arewords surrounding it in aT -sizedwindowwi−T , ...,wi−1,wi+1
, ...,wi+T . The corpus of observed word and context pairs is denoted
as D. We use #(w, c) to denote the frequency of pair (w, c) appears
in D.

Each target wordw corresponds to a vector w⃗ ∈ Rd and similarly
each context word c is represented as a vector c⃗ ∈ Rd , where d
is the embedding dimension. The values in the embedding vector
referred to as latent variables are the parameters to be learned.
The vector w⃗ is the row in a |V | × d matrixW , and vectors c⃗ is a
row in a |V | × d matrix C , where |V | is the vocabulary size and
is derived from the corpus D. In such cases,Wi and Ci represent
vector representations of the i-th target word and context word in
the vocabulary respectively.

Our starting point is the skip-gram embedding model trained
with the negative sampling. Consider a word-context pair (w, c).
Let p (D = 1|w, c) be the probability that (w, c) is observed in D,
and p (D = 0|w, c) = 1 − p (D = 1|w, c) the probability that (w, c) is
non-observed. The distributions can then be expressed as:

p (D = 1|w, c) = σ (w⃗ · c⃗) =
1

1 + e−w⃗ ·⃗c
(1)

where w⃗ and c⃗ are d dimensional vectors, and will be learned by
the model.

Theword embedding learning algorithm aims tomaximizep (D =
1|w, c) for observed pair (w, c), meanwhile, minimize p (D = 0|w, c)
for randomly sampled non-observed pairs, under the intuition that
randomly sampled non-observed word-context pairs are more likely
to be negative pairs. For each observed (w, c) pair and a set of k
negative examples V −wk

that are sampled from the whole negative
example set V −w , the SGNS objective function is defined as [23]:
1We merely elaborate our idea by using the skip-gram model, while it simply applies to the contin-
uous bag-of-words (CBOW) model.

Figure 1: (a) and (b) show the word popularity distribution of Wiki2017 and NewsIR datasets respectively. Popularity in both
datasets is tailed.

(a) (b)

Figure 2: (a) and (b) show the probability of gradient magnitude of varying samplers with skip-gram model on Wiki2017 and
NewsIR datasets respectively.

E = − logσ (w⃗ · c⃗P) −
∑

cN ∈V −wk

logσ (−w⃗ · c⃗N) (2)

where cP is the positive (observed) context word and cN is the
negative (non-observed) context word forw , which is selected by
oversampling popular words.

pD (cN) =
#(cN)α

|D |
(3)

where #(cN) is the frequency of word cN in the corpus D, and
|D | represents the number of available words. The exponent α
controls theweight distribution of sampled negativewords, which is
experimentally shown that when α = 0.75, the algorithm performs
the best [23]. Note that the random sampling distribution is a special
case by setting α = 0.

Minimizing this objective function makes observed pair (w, c)
have similar embedding representation while scattering the non-
observed ones. This is intuitively correct as words appear in similar
context should bear a close resemblance. Mathematically, SGNS
tries to maximize the inner-product of similar words and minimize
the dot-product of dissimilar ones.

3.2 Gradient Issues in Tailed Word Distribution
Even though the word-popularity based negative sampler (i.e. Eq. 3)
has been successfully applied in various word embedding models,
the theoretical motivation behind oversampling popular negative
words is yet known. In the following, we seek to show, both theoret-
ically and intuitively, drawing negative words with high popularity
frequency is a reasonable yet suboptimal sampling method.

To begin with, we follow Mikolov et al. [23] by using stochastic
gradient descent (SGD) to optimize Eq. 2. The gradient for model
parameter θ is then given as:

∂E

∂θ
=(σ (w⃗ · c⃗P) − 1)

∂w⃗ · c⃗P
∂θ

+
∑

cN ∈V −wk

σ (w⃗ · c⃗N)
∂w⃗ · cN
∂θ

(4)

Let θ = cP or θ = cN , then we can update c⃗P and c⃗N with Eq. 4
as follows:

c⃗newP ← c⃗oldP − η (σ (w⃗ · c⃗P) − 1)︸ ︷︷ ︸
△w,cP

w⃗ (5)

c⃗newN ← c⃗oldN − η σ (w⃗ · c⃗N)︸ ︷︷ ︸
△w,cN

w⃗ (6)

where △w,cP and △w,cN are known as gradient magnitude. Note
that since the number of observed words (i.e. cP) is very small
compared with non-observed words (i.e. cN), it does not require to
design a special sampling method. Hence, in this paper we focus
only on the learning process of Eq. 6.

To provide the insight and motivation of popularity based nega-
tive sampling, we analyze the gradient update process of Eq. 6 by
employing a simple random sampler (i.e. α = 0 in Eq. 3). First, we
observe that the value of the updated gradient in Eq. 6 is largely
dependent on the the score function (i.e. w⃗ · c⃗N)). The quantity of
△w,cN is obviously a probability and is close to 0 if cN is correctly
predicted as a true negative word, because in this case w⃗ · c⃗N is
supposed to be small. In fact, the gradient magnitude △w,cN can be
understood as how much influence the (w, cN) pair has for improv-
ing Θ. If it is close to 0, nothing is learned from the pair (w, cN)
because its gradient vanishes, i.e. θ cannot be changed in the up-
dating process. It is worth noting that △w,cN relies on parameters
Θ and is constantly changed during learning. Hence, we proceed
by analyzing how the vanishing gradient occurs without a proper
negative sampler and why oversampling popular words is able to
address the issue.

In word-embedding tasks, word popularity (i.e. occurrence fre-
quency) is typically non-uniform distributed and some words are in
general more popular than others. Figure 1 shows word frequency
distributions for Wiki2017 and NewsIR datasets respectively. Both
datasets shows that the vast majority of words are low popularity
and thus by random sampling, most selected negative words are
those tailed words. On the other side, △w,cN is supposed to be small
in general if cN has lower popularity (i.e. a lower rank position)
in Figure 1. The reason is straightforward because an ideal learner
is expected to assign a larger score for △w,c if c is an observed
positive context word and a lower score if c is a negative word. As
we know, the lower popularity c has, the fewer times it acts as a
positive context word, and thus the lower score △w,c is assigned to.
If △w,c has a very small value, then σ (w⃗ · c⃗P) is close to 0, which
means the gradient vanishes. Hence, the purpose of oversampling
popular words is to select more informative negative examples to
overcome gradient vanishing problem and speed up the training
process. Figure 2 shows the gradient magnitude of varying sam-
pling approaches. It can be seen that after a few training epochs,
almost all the negative samples, selected by the random sampler,
have very small gradient magnitudes (△w,cN), which suggests most
of them are useless in the SGD learning process. On the contrary,
the popularity-based sampler and our proposed adaptive sampler
(cf. Section 4) can significantly increase the gradient magnitude by
a large factor, and thus can alleviate the gradient vanishing issue.

3.3 Learning Optimal Ranking for Embeddings
In this subsection, we provide an intuitive example to explain the
merits of popularity oversampling from ranking perspective. The
reason is that trainingword embedding can also be naturally viewed
as a ranking task that ranks an observed context word cP higher
than any non-observed context word cN [14]. To illustrate this,
we give a schematic of a ranked list for a target wordw as below,
where +1 and -1 denote an observed and non-observed context word
respectively. We use NDCG (Normalized Discount Cumulative Gain

[21]) as the ranking metric for explanation, similar to other metrics,
e.g. AP (Average Precision) [21].

RankOrder :
△NDCG (w)71=0.409︷ ︸︸ ︷

−1, −1, +1, −1, −1, −1, +1︸ ︷︷ ︸
△NDCG (w)75=0.033

,−1 , ...,−1

where △NDCGi j denotes the size of NDCG change for word w
when positive context word with the position i and negative context
word with the position j get swapped. As can be seen, the value
of △ NDCG (w)71 is much larger than that of △NDCG (w)75. This
implies that △ NDCG (w) is likely to be larger if the non-observed
word cN has a smaller rank. Hence, the new NDCG value after
swapping is also larger if △NDCG (w) is larger2. This is intuitively
correct as the high ranked non-observed words hurt the ranking
performance more than the low ranked ones. A higher NDCG value
for the rank list of target wordw corresponds with better accuracy
in distinguishing observed and non-observed contexts. As discussed
in Section 3.2, popular words are more likely to have larger scores
(or smaller rank) than non-popular words. Our idea here is similar
to that used in [46, 47] for a different problem.

In fact, both Section 3.2 and 3.3 show that larger score (smaller
rank) negative context words are more informative for training the
embedding models, and popular words are alternative instances
for larger score negative words. Empirical results in word2vec[23]
have already proven that approximate sampling based on word
popularity distribution usually results in both promising accuracy
and faster convergence.

3.4 Issues of Popularity Sampling
Both the theoretical and intuitive motivations regarding the nega-
tive sampler have been discussed: select for a target wordw , and
one (or several) negative context word c such that the pair (w, c) is
informative at the current state of learning. However, the original
popularity oversampling does not reflect this for two reasons: (1)
It is static and thus the empirical popularity distribution does not
change during the learning process. However, the estimated score
ŷ (c |w) = w⃗ · c⃗ (or rank r̂ (c |w)) of a context word c changes during
learning. E.g. c might have a larger score (with w) in the begin-
ning but after several epochs of training it is ranked low. (2) The
sampler is global and does not reflect the semantic and syntactic
information regarding how informative a word is. For example, a
popular word is more likely to act as a context word with a group of
target words, but still can be irrelevant for another one. Meanwhile,
learning with popularity-based sampler can slow down after the
algorithm learns to (generally) rank positive context word above
popular words, and thus can be inaccurate with ranking long tail
but high scoring context words. Both points can also be observed in
the gradient magnitude △w,c , which depends on the inner product
of self-embedded features w⃗ and c⃗N and changes during learning.
In the next section, we will present a new adaptive sampler that
select informative negative words based on the embedded features
in w⃗ and c⃗ , which are known as the low-dimensional representation
of semantic and syntactic information.

2NDCG (w)new=NDCG (w)old+△NDCG (w)

4 IMPROVED NEGATIVE SAMPLING
In this section, a dynamic sampler that takes account of multi-
dimensional self-embedded features is proposed to replace the orig-
inal popularity-based sampler.

4.1 Basic adaptive Sampler
As has been discussed in Section 3.4, we are able to propose a
straightforward adaptive sampler which defines the sampling dis-
tribution directly based on the scoring function ŷ (c |w) = w⃗ · c⃗
instead of the popularity word distribution. Intuitively, when a
negative word cN in a given word list is sampled, the closer cN
is ranked at the the top position by ŷ (cN |w), the more important
cN is. This has been understood from both the gradient magnitude
△w,cN (Section 3.2) and ranking perspective (Section 3.3). For ex-
ample, if (w, cN) is given, we should choose cN such that ŷ (cN |w)
is large since it will largely increase both △w,cN and NDCG. In the
following, instead of using the notion of a large score it is better to
formalize a small predicted rank r̂ (cN |w), since largeness of scores
is only a relative value to other words but ranks will be an abso-
lute value. This allows us to formulate a basic dynamic sampling
distribution that assigns higher sampling weight for small ranked
context words.

pD (cN |w) ∝ exp(
−r̂ (cN |w)

λ
), λ = |V | · ρ, ρ ∈ (0, 1] (7)

where ρ is the hyper-parameter that controls the shape of the expo-
nential distribution and should be tuned according to the dataset.

Properties: The context word distribution (Eq. 7) depends on
r̂ (cN |w), and has two important properties:

(1) Feature-dependent: Remind that r̂ (cN |w) is the rank of word
cN among all words in the vocabulary using the inner prod-
uct of self-embedded features w⃗ and c⃗N for ordering words,
and thus it is feature-dependent and inherently can represent
the semantic and syntactic relations betweenw and cN .

(2) Adaptive: The sampler changes while model parameters are
learned because changes in parameters lead to consequently
in changes in the scoring model ŷ, the ranking r̂ (cN |w), and
hence, the sampler.

4.2 Efficient Sampling Algorithm
So far, we have designed a trivial adaptive & self-embedded feature
based sampler. However, the additional computational cost of the
proposed sampler is to score all non-observed context words ofw
in the whole word list to obtain the rank r̂ (cN |w), which means
before each SGD update, the rough computational complexity of
O (d |V −w |) is required3. As the whole training process has always
millions of SGD updates, it is generally infeasible in practice. In
this section, we will show how approximative sampling from Eq.
7 can be implemented efficiently in amortized time for the word
embedding task.

Let the scoring model ŷ still be the inner product of a factorized
matrix.

ŷ (c |w) = w⃗ · c⃗ =
d∑
f =1

w⃗f c⃗f (8)

3The size of non-observed context words |V −w | is much larger than that of observed ones |V +w |, i.e.
|V −w | ≈ |V |, as |V

+
w | + |V

−
w | = |V |.

Algorithm 1: Skip-gram model with adaptive and feature-
dependent oversampling of negative words.
1 1: Random initialize the parameters Θ
2 2: t ← 0; while t < MaxIteration do
3 if t % |V | log |V | = 0 then
4 for f ∈ {1, ...,d } do
5 compute r̂ (.| f)
6 compute σ⃗f and µ⃗f
7 end
8 end
9 Draw (w, c) ∈ D uniformly

10 for neд = 0; neд < k ; neд + + do
11 Draw r from p (r) ∝ exp(−r/λ)
12 Draw f from p (f |w) ∝ |w⃗f |σ⃗f
13 if sgn(w⃗f) = 1 then
14 cN = r

−1 (r | f)

15 end
16 else
17 cN = r

−1 (|V | − f + 1) | f)
18 end
19 Store cN in V −wk

20 end
21 Update θ ∈ Θ
22 t ← t + 1
23 end

Now, a fast adaptive and feature-dependent sampling algorithm is
presented which approximates the sampler from Eq 7. The idea is
to formalize Eq 7 as a mixture of ranking distributions over normal-
ized factors. The mixture probability is calculated by a normalized
version of the scoring function Eq. 8

Normalization Scheme: First, we assume the context word
factors for each dimension f correspond to the normal distribution,
then the standard factor c⃗ ′f ∼ N (0, 1) is given as

c⃗ ′f =
c⃗f − µ⃗f

σ⃗f
(9)

where µ⃗f and σ⃗f is the mean value and standard deviation for each
f . Hence, we update Eq 8 by replacing c⃗f in Eq 9.

ŷ (c |w)= w⃗ · c⃗ =
d∑
f =1

w⃗f c⃗f =
d∑
f =1
|w⃗f |sgn(w⃗f) (c⃗

′
f σ⃗f + µ⃗f)

=

d∑
f =1
|w⃗f |sgn(w⃗f)µ⃗f +

d∑
f =1
|w⃗f |sgn(w⃗f)c⃗

′
f σ⃗f (10)

where sgn denotes the sign function, and the first (underlined) term
can be treated as a constant value relative to the context word c .
In other words, if we want to obtain the rank r̂ (c |w) of different
context words, we just need to compare the rank of the second
terms, say, r̂∗ (c |w), in a linear transformation equation. Thus, we
can derive a new scoring function ŷ∗ (c |w) which shares the same

ranking relations with ŷ (c |w).

ŷ∗ (c |w) =
d∑
f =1
|w⃗f |sgn(w⃗f)c⃗

′
f σ⃗f (11)

Modeling the Mixture Distribution: Before deriving the mix-
ture distribution, we first revisit the physical meaning of Eq 12.
As we known, each word is represented by an embedding vector,
which means ŷ∗ (c |w) or ŷ∗ (c⃗ |w⃗) can be decomposed as a mixture
distribution of all real-valued elements in the embedding vector.
Understanding this, we can define the sampling distribution as
follows:

p (cN |w) =
d∑
f =1

p (f |w)p (cN |w, f) (12)

As discussed, the real-value c⃗ ′f follows the standard normal distri-
bution, we can define p (cN |w, f) analogously to Eq. 7 by replacing
the ranking function r̂∗.

p (cN |w, f) ∝ exp(
−r̂∗ (cN |w, f)

λ
) (13)

where r̂∗ (cN |w, f) can be inferred from ŷ∗ (cN |w, f). Now, two
questions arise: how to perform sampling according to p (f |w), and
how to estimate the score of ŷ∗ (cN |w, f)? Since the value of p (f |w)
stands for the importance of the dimension f for w⃗ , we have

p (f |w) ∝ |w⃗f |σ⃗f (14)

which means the large value w⃗f and σ⃗f have, the more important
f is in w⃗ . Thus, we have

ŷ∗ (cN |w) =
d∑
f =1

p (f |w)sgn(w⃗f)c⃗
′
N f (15)

Accordingly, this scoring function is reasonably given as

ŷ∗ (cN |w, f) = sgn(w⃗f)c⃗
′
N f (16)

Calculating Eq 16 is not straightforward. However, according to
above analysis, ŷ (cN |w, f) is also the linear transformation of
ŷ∗ (cN |w, f), we can have a simpler function:

ŷ (cN |w, f) = sgn(w⃗f)c⃗N f (17)

The relation of the scoring function ŷ (cN |w, f) and its rank r̂ (cN |w, f)
is: the word on rank r has the r − th largest value c⃗N f , if sgn(w⃗f)
is positive otherwise it has the largest negative value. It is worth
noticing that the sampling idea here is motivated by [33], which
however solves for a different research problem.

Sampling Method: The above sampling analysis leads to a sim-
ple sampling algorithm for negative context words, which is detailed
in Algorithm 1.

(1) Draw a rank r from a Geometric distribution.
(2) Draw a dimension f from p (f |w) (Eq. 14).
(3) Sort context words in terms of c ., f in a descending order
(4) Return the word cN on position r in the sorted list when

sgn(w⃗f) is positive otherwise cN is the one ranked at N − r
Steps 1 and 4 has O (1) complexity, step 2 includes the compu-

tation of p (f |c) is O (d). The only computational intensive step
is 3, where items of each factor are sorted in O (|V |loд |V |) (i.e.,
d |V |loд |V | in total). Considering that each SGD update has little

change on the overall word ranks, it is not necessary to perform step
3 for each SGD update. Empirically, we observe that recomputing
the ranks every |V | log |V | iterations also yields good results. Hence,
the average time complexity of step 3 isO (d |V |loд |V |)/|V |loд |V |=O (d).
Hence, the sampling algorithm has an amortized runtime of O (k)
for selecting an negative word, which is the same cost in a single
gradient step of a Matrix Factorization model.

5 EXPERIMENTS
5.1 Experimental Setup
We evaluate the performance of the proposed adaptive sampler by
using two real-world corpora. The first one is NewsIR4 that is a
collection of news articles derived from major newswires, such as
Reuters, in addition to local news sources and blogs. The second
one is the full Wikipedia articles5. Notice that these two training
datasets are of varying sizes. The NewsIR dataset contains 30million
words. The Wikipedia 2017 dataset is about 2.3 billion words.

Parameter Setting We tokenize and lowercase each corpus with
the Weka tokenizer. Similar to [23], the down-sampled rate is set as
1e−3, and the learning rate is set with the starting value η = 0.025
and ηt = η(1−t/T) for all experiments, whereT is the total number
of training samples and t is the number of trained samples. On both
datasets, we train the skip-gram models with different samplers
until it is converged.

For popularity-based sampler, we find that power = 0.75 offers
the best accuracy. For comparison purpose, we set window size
= 8, dimension = 200 for all methods, which are the default setting
recommended in [23].

5.2 Evaluation Method
To begin with, we conduct experiments on two common tasks
namely, word analogy and word similarity. The word analogy task
is comprised of questions such as, “a is to b as c is to _?" The testing
set has 19,544 such questions which are fallen into a semantic cate-
gory and a syntactic category. The semantic questions are usually
analogies about people name or locations. For instance, “London is
to UK as Paris to _?". The syntactic questions are generally about
verb tense or forms of adjectives, for example “Swim is to swim-
ming as run is to _?". To resolve the question, the model has to
uniquely capture the missing token, which means there is only one
exact match that is considered as ground truth.

As for word similarity task, we use a word similarity bench-
marks [7] to evaluate the correctness of our adaptive sampler.
Specifically, we use the datasets collected by Faruqui and Dyer
which include 7 datasets namely, SIMLEX-999, RW, WS353, MURK,
WS353S, WS353R, RG656. We calculate cosine value to compute
the similarities between words, and then rank the similar words.
The Spearman’s rank correlation coefficient is adopted to measure
the correlation of ranks between human annotation and computed
similarities.

To demonstrate the effectiveness of our adaptive sampler, we
compare it with the original popularity-based sampling method, i.e.

4http://research.signalmedia.co/newsir16/signal-dataset.html
5https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
6http://www.wordvectors.org/

(a) (b) (c)

Figure 3: Parameters of CBOWA and SGA of varying parameter values trained on Wiki2017 dataset with adaptive samplers

Table 1: The accuracy over different datasets, where d = 200,win = 8, and threads = 20,neд = 5 for both datasets (statistical
significance using t-test: ** indicates p-value < 0.01 while * indicates p-value < 0.05).

.

Data CBOW CBOWU CBOWA SG SGU SGA

NewsIR (1B) 0.621 0.485 0.644 0.605 0.476 0.619
Wiki (2B) 0.760 0.592 0.788 0.782 0.648 0.793*
ALL (3B) 0.768 0.613 0.792 0.786 0.654 0.812**

Table 2: The experimental results (accuracy) trained with
the whole training dataset (NEWSIR+WIKI2017), where d =
200,win = 8, and threads = 20,neд = 2.

Data semantic syntactic total

CBOW 0.812 0.703 0.759
CBOWU 0.639 0.616 0.628
CBOWA 0.793 0.721 0.779*
SG 0.828 0.794 0.796
SGU 0.523 0.537 0.553
SGA 0.868 0.798 0.823*

ρ = 0.75. To show the effects of gradient vanishing issue, we also
report results with a uniform sampler, i.e. ρ = 0.
• SG: The skip-gram model with the popularity-based sampler
[23].
• SGU: The skip-gram model with the uniform sampler.
• SGA: The skip-gram model with the adaptive sampler de-
scribed in Section 4.2.
• CBOW: Continuous bag-of-wordsmodel with the popularity-
based sampler [23].
• CBOWU: Continuous bag-of-words model with the uniform
sampler .
• CBOWA: Continuous bag-of-words model with the adaptive
sampler.

5.3 Experimental Results
In order to make a fair comparison, the parameter ρ of SGA and
CBOWA need to be properly tuned first. The performance of word

embeddings were tuned on the training set (Wiki2017) and evalu-
ated on the testing set. The results reported in Figure 3 are those
on the testing set. Figure 3 (a), (b), (c) show how the performance
of adaptive sampler varies given different parameter values. From
Figure 3 (a), (b), one can observe that the models achieve a good re-
sult when window size is bigger than 7 and the vector dimension is
larger than 200. As mentioned in Section 4.2, ρ controls the relative
density of sampling distribution. From Figure 3 (c), one can see that
the best performance is achieved when ρ = 0.005 and ρ = 0.006 for
CBOWA and SGA, respectively.

Furthermore, [16] found that even using a small number of neg-
ative samples (e.g. k = 5) could achieve a respectable accuracy on
large-scale datasets, although using a larger number of samples
(e.g. k = 15) achieves considerably better performance. In Figure
5 we plot the results by increasing the number k on both datasets,
which shows the similar trends with [16]. As can also be seen, the
accuracy on (a) converged when k is larger than 15 for NewsIR
dataset. One possible reason is that NewsIR dataset is noisier than
Wiki2017 dataset, thereby as the number of negative pairs is in-
creased beyond the minimum, overfitting tends to set in. We also
observe that the SGA significantly outperforms SG irrespective of
the number of negative pairs. Similarly, the CBOWA significantly
outperforms CBOW (as shown in Fig 5) (c) and (d)), which indicates
that our proposed sampling approach is more effective than the
original word2vec [23].

Given the optimal parameter settings, the word analogies and
word similarities tasks on the testing sets are reported in Table
1, 2 and Figure 4, respectively. First, it can be seen that our pro-
posed adaptive sampler outperforms the classical popularity-based
sampler for both the word analogies and word similarities tasks.
Second, SGU has much worse prediction quality than SG and SGA.

Figure 4: Comparison of word embeddings trained with Wiki2017 for word similarity tasks on benchmark datasets

Figure 5: (a) and (b) show the accuracy of SG with varying number of negative samples on NEWSIR and WIKI2017 datasets,
respectively for the word analogy task; (c) and (d) show the accuracy of CBOW with varying number of negative samples on
NEWSIR and WIKI2017 datasets for the word analogy task.

This further verifies the gradient vanishing issue in a uniform sam-
pler as most SGD updates have no effect on parameter changing.
It also confirms that adaptive oversampling and popularity-based
sampling can effectively alleviate the vanishing gradient issue.

5.3.1 Document Classification. As a further demonstration of
the utilities of our model, we experimented with document clas-
sification with a similar setup in [27]: we use 20 Newsgroups7 as
testing set, which is a collection of newsgroup documents, par-
titioned evenly across 20 different newsgroups. We use the full
dataset with 20 categories, such as atheism, computer graphics, and
computer windows X.

5.3.2 Runtime. Table 3 compares training time of different sam-
plers. All experiments are conducted on a dual 3.5GHz Intel i5-4690
machine in a single thread. The training time depends on many
factors, including embedding dimension, window size, vocabulary
size, and corpus size. Due to limited space, we only report the exe-
cution time with varying embedding dimension by keeping other
hyper-parameters fixed. As can be seen, our adaptive oversampling
does not increases the training time much. This confirms our anal-
ysis in Section 4.2 that the sampling algorithm has an amortized
runtime ofO (d), which is the same as the costs for a single gradient
step of an inner product operation.

6 CONCLUSION AND FUTUREWORK
In this paper, we first elaborated the motivation of the word pop-
ularity based oversampling in word2vec [23] from both gradient
vanishing and ranking perspectives. After this, we proposed an
improved negative sampler that could dynamically oversample
high score negative words by leveraging embedding features. The
7https://qwone.com/ jason/20Newsgroups/

Table 4: The running time (minutes) of different sampling
methods in the NewsIR dataset, wherewin = 8, and threads =
20,neд = 25.

dimension d CBOW CBOWA SG SGA
200 37.4 68.6 269.7 388.9
250 41.3 72.6 286.2 399.3
300 47.5 81.3 347.5 465.6

proposed Adaptive Sampler superseded the existing one since the
sampling process took account of multi-dimensional word informa-
tion instead of only popularity. More importantly, the algorithm had
an amortized constant runtime and the empirical overhead is only
marginal. This makes our method highly attractive for practical
use.

There are several interesting and promising directions in which
this work could be extended. First, in this work we only focused on
two types of applications, namely, word analogy and document clas-
sification, it will be interesting to study the performance ofAdaptive
Sampler with additional tasks, such as information retrieval and
question answering. it would be also interesting to investigate the
performance of our sampler by applying it to complex embedding
models, such as tensor factorization [39]. Finally, most existing
word embedding models rely on the negative sampling techniques
with an SGD optimizer, we would like to investigate more advanced
optimization techniques that could handle the entire negative sam-
ples for training embedding models, e.g. in [45].

7 ACKNOWLEDGEMENTS
We acknowledge support from the EPSRC funded project named A
SituationAware Information Infrastructure Project (EP/L026015).
This work was also partly supported by NSF grant #61572223.

REFERENCES
[1] Eric Bailey and Shuchin Aeron. Word embeddings via tensor factorization. arXiv

preprint arXiv:1704.02686, 2017.
[2] Marco Baroni, Georgiana Dinu, and Germán Kruszewski. Don’t count, predict!

a systematic comparison of context-counting vs. context-predicting semantic
vectors. In ACL (1), pages 238–247, 2014.

[3] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural
probabilistic language model. Journal of machine learning research, 3(Feb):1137–
1155, 2003.

[4] Long Chen, Dell Zhang, and Mark Levene. Question retrieval with user intent.
In Proceedings of the 36th international ACM SIGIR conference on Research and
development in information retrieval, pages 973–976. ACM, 2013.

[5] Ronan Collobert and Jason Weston. A unified architecture for natural language
processing: Deep neural networks with multitask learning. In Proceedings of the
25th international conference on Machine learning, pages 160–167. ACM, 2008.

[6] Ronan Collobert, JasonWeston, Léon Bottou,Michael Karlen, Koray Kavukcuoglu,
and Pavel Kuksa. Natural language processing (almost) from scratch. Journal of
Machine Learning Research, 12(Aug):2493–2537, 2011.

[7] Manaal Faruqui and Chris Dyer. Community evaluation and exchange of word
vectors at wordvectors.org. In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics: System Demonstrations, Baltimore, USA,
June 2014. Association for Computational Linguistics.

[8] Xavier Glorot, Yoshua Bengio, and Yann N Dauphin. Large-scale learning of
embeddings with reconstruction sampling. In Proceedings of the 28th International
Conference on Machine Learning (ICML-11), pages 945–952, 2011.

[9] Yoav Goldberg and Omer Levy. word2vec explained: Deriving mikolov et al.’s
negative-sampling word-embedding method. arXiv preprint arXiv:1402.3722,
2014.

[10] Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new
estimation principle for unnormalized statistical models. In AISTATS, volume 1,
page 6, 2010.

[11] Michael U Gutmann and Aapo Hyvärinen. Noise-contrastive estimation of
unnormalized statistical models, with applications to natural image statistics.
Journal of Machine Learning Research, 13(Feb):307–361, 2012.

[12] Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-Seng Chua. Fast matrix
factorization for online recommendation with implicit feedback. In Proceedings
of the 39th International ACM SIGIR conference on Research and Development in
Information Retrieval, pages 549–558. ACM, 2016.

[13] Stanisław Jastrzebski, Damian Leśniak, and Wojciech Marian Czarnecki. How
to evaluate word embeddings? on importance of data efficiency and simple
supervised tasks. arXiv preprint arXiv:1702.02170, 2017.

[14] Shihao Ji, Hyokun Yun, Pinar Yanardag, Shin Matsushima, and SVN Vish-
wanathan. Wordrank: Learning word embeddings via robust ranking. arXiv
preprint arXiv:1506.02761, 2015.

[15] Yoon Kim, Yacine Jernite, David Sontag, and Alexander M Rush. Character-aware
neural language models. In Thirtieth AAAI Conference on Artificial Intelligence,
2016.

[16] Quoc Le and Tomas Mikolov. Distributed representations of sentences and
documents. In Proceedings of the 31st International Conference onMachine Learning
(ICML-14), pages 1188–1196, 2014.

[17] Rémi Lebret and Ronan Collobert. Word emdeddings through hellinger pca.
arXiv preprint arXiv:1312.5542, 2013.

[18] Omer Levy and Yoav Goldberg. Neural word embedding as implicit matrix
factorization. In Advances in neural information processing systems, pages 2177–
2185, 2014.

[19] Omer Levy, Yoav Goldberg, and Ido Dagan. Improving distributional similarity
with lessons learned from word embeddings. Transactions of the Association for
Computational Linguistics, 3:211–225, 2015.

[20] Minh-Thang Luong, Ilya Sutskever, Quoc V Le, Oriol Vinyals, and Wojciech
Zaremba. Addressing the rare word problem in neural machine translation.
arXiv preprint arXiv:1410.8206, 2014.

[21] Brian McFee and Gert R Lanckriet. Metric learning to rank. In Proceedings of
the 27th International Conference on Machine Learning (ICML-10), pages 775–782,
2010.

[22] Oren Melamud, Jacob Goldberger, and Ido Dagan. context2vec: Learning generic
context embedding with bidirectional lstm. In Proceedings of CONLL, 2016.

[23] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Dis-
tributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems, pages 3111–3119, 2013.

[24] Piotr Mirowski and Andreas Vlachos. Dependency recurrent neural language
models for sentence completion. arXiv preprint arXiv:1507.01193, 2015.

[25] Andriy Mnih and Geoffrey E Hinton. A scalable hierarchical distributed language
model. In Advances in neural information processing systems, pages 1081–1088,
2009.

[26] Andriy Mnih and Koray Kavukcuoglu. Learning word embeddings efficiently
with noise-contrastive estimation. In Advances in neural information processing
systems, pages 2265–2273, 2013.

[27] Frederic Morin and Yoshua Bengio. Hierarchical probabilistic neural network
language model. In Aistats, volume 5, pages 246–252. Citeseer, 2005.

[28] Preslav Nakov, Sara Rosenthal, Svetlana Kiritchenko, Saif M Mohammad, Zor-
nitsa Kozareva, Alan Ritter, Veselin Stoyanov, and Xiaodan Zhu. Developing a
successful semeval task in sentiment analysis of twitter and other social media
texts. Language Resources and Evaluation, 50(1):35–65, 2016.

[29] Arvind Neelakantan, Quoc V Le, and Ilya Sutskever. Neural programmer: In-
ducing latent programs with gradient descent. arXiv preprint arXiv:1511.04834,
2015.

[30] Hao Peng, Jianxin Li, Yangqiu Song, and Yaopeng Liu. Incrementally learning
the hierarchical softmax function for neural language models. 2016.

[31] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global
vectors for word representation. In EMNLP, volume 14, pages 1532–1543, 2014.

[32] Steffen Rendle. Scaling factorization machines to relational data. In Proceedings
of the VLDB Endowment, volume 6, pages 337–348. VLDB Endowment, 2013.

[33] Steffen Rendle and Christoph Freudenthaler. Improving pairwise learning for
item recommendation from implicit feedback. In Proceedings of the 7th ACM
international conference on Web search and data mining, pages 273–282. ACM,
2014.

[34] Alexandre Salle, Marco Idiart, and Aline Villavicencio. Matrix factorization using
window sampling and negative sampling for improved word representations.
arXiv preprint arXiv:1606.00819, 2016.

[35] Erik F Tjong Kim Sang and Fien De Meulder. Introduction to the conll-2003
shared task: Language-independent named entity recognition. 2003, 2014.

[36] Anshumali Shrivastava and Ping Li. Asymmetric lsh (alsh) for sublinear time max-
imum inner product search (mips). In Advances in Neural Information Processing
Systems, pages 2321–2329, 2014.

[37] Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting Liu, and Bing Qin. Learning
sentiment-specific word embedding for twitter sentiment classification. In ACL
(1), pages 1555–1565, 2014.

[38] Fei Tian, Hanjun Dai, Jiang Bian, Bin Gao, Rui Zhang, Enhong Chen, and Tie-Yan
Liu. A probabilistic model for learning multi-prototype word embeddings. In
COLING, pages 151–160, 2014.

[39] Ledyard R Tucker. Some mathematical notes on three-mode factor analysis.
Psychometrika, 31(3):279–311, 1966.

[40] Peter D Turney and Patrick Pantel. From frequency to meaning: Vector space
models of semantics. Journal of artificial intelligence research, 37:141–188, 2010.

[41] Sudheendra Vijayanarasimhan, Jonathon Shlens, Rajat Monga, and Jay Yagnik.
Deep networks with large output spaces. arXiv preprint arXiv:1412.7479, 2014.

[42] Pascal Vincent, Alexandre de Brébisson, and Xavier Bouthillier. Efficient exact
gradient update for training deep networks with very large sparse targets. In
Advances in Neural Information Processing Systems, pages 1108–1116, 2015.

[43] Shengxian Wan, Yanyan Lan, Jiafeng Guo, Jun Xu, Liang Pang, and Xueqi Cheng.
A deep architecture for semantic matching with multiple positional sentence
representations. In Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[44] Jason Weston, Samy Bengio, and Nicolas Usunier. Wsabie: Scaling up to large
vocabulary image annotation.

[45] Fajie Yuan, Guibing Guo, Xiangnan He, Joemon M Jose, Long Chen, Ioannis
Arapakis, and Weinan Zhang. Fast batch gradient method for implicit recom-
menders.

[46] Fajie Yuan, Guibing Guo, Joemon M Jose, Long Chen, Haitao Yu, and Weinan
Zhang. Lambdafm: learning optimal ranking with factorization machines using
lambda surrogates. In Proceedings of the 25th ACM International on Conference on
Information and Knowledge Management, pages 227–236. ACM, 2016.

[47] Fajie Yuan, Guibing Guo, Joemon M Jose, Long Chen, Haitao Yu, and Weinan
Zhang. Boostfm: Boosted factorization machines for top-n feature-based recom-
mendation. In Proceedings of the 22nd International Conference on Intelligent User
Interfaces, pages 45–54. ACM, 2017.

[48] Guangyou Zhou, Tingting He, Jun Zhao, and Po Hu. Learning continuous
word embedding with metadata for question retrieval in community question
answering. In ACL (1), pages 250–259, 2015.

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminary
	3.1 Continuous Skip-gram Model
	3.2 Gradient Issues in Tailed Word Distribution
	3.3 Learning Optimal Ranking for Embeddings
	3.4 Issues of Popularity Sampling

	4 Improved Negative Sampling
	4.1 Basic adaptive Sampler
	4.2 Efficient Sampling Algorithm

	5 Experiments
	5.1 Experimental Setup
	5.2 Evaluation Method
	5.3 Experimental Results

	6 Conclusion and Future Work
	7 Acknowledgements
	References

