

Future Data Helps Training: Modeling Future Contexts for Session-based Recommendation

Fajie Yuan (Tencent), Xiangnan He (National University of Singapore), Haochuan Jiang (University of Edinburgh), Guibing Guo (Northeastern University, China), {Jian Xiong, Zhezhao Xu, Yilin Xiong} (Tencent)

 Session-based (aka Sequential) recommendation Apps: Short-videos (Tik Tok, Weishi, Kuaishou) Music (Tencent music, Yahoo! Music) & News Movie clips (You Tube, Netflix)

国联播 👌 🔵

推荐 关注

🛛 🖆 🛑 由午11:4

- Related work:
- Markov chain: Long long ago
- RNN/LSTM: GRURec[1, 2] 2016-2018
- CNN : Caser [3], NextItNet [4] 2018-2019
- Attention : Transformer [5] 2018-2019

[1] session-based recommendations with recurrent neural networks. ICLR 2016

[2] Personalizing Session-based Recommendations with Hierarchical Recurrent Neural Networks. arXiv2017

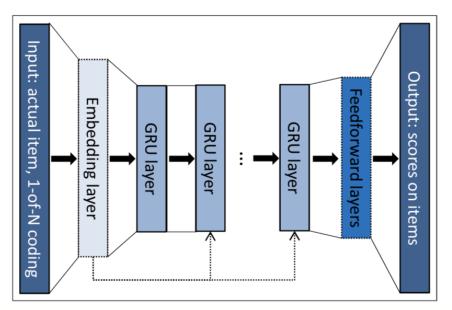
[3] Personalized Top-N Sequential Recommendation via Convolutional Sequence Embedding. WSDM2018

[4] A Simple Convolutional Generative Network for Next Item Recommendation. WSDM2019

[5] Next Item Recommendation with Self-Attention. ICDM2018

- Session-based rec: Top-n item recommendation
- Offline: NDCG, MRR, MAP, Pre@10, Rec@10
- Online: UV, VV, PV, CTR, DAU

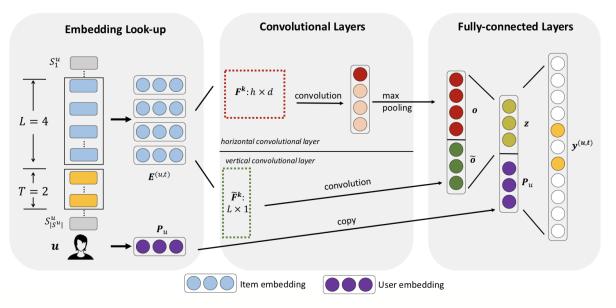
• **RNN/LSTM:** GRU4Rec[1], Improved GRU4Rec



pros: good for modelling seq cons: bad for utilizing GPU

[1] session-based recommendations with recurrent neural networks. ICLR 2016

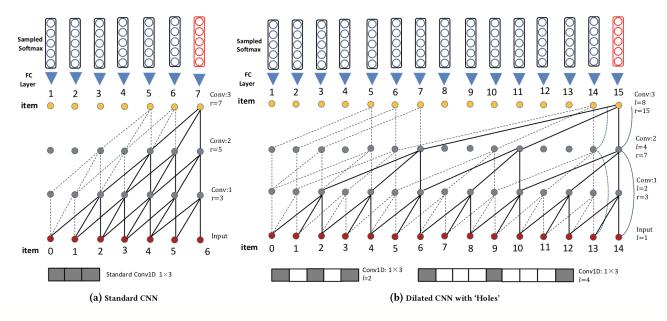
• CNN: Caser[1]



Pros: good for using GPU Cons: max pooling loses some information, shallow layers

[1] Personalized Top-N Sequential Recommendation via Convolutional Sequence Embedding. WSDM2018

Dilated CNN: NextItNet[1]

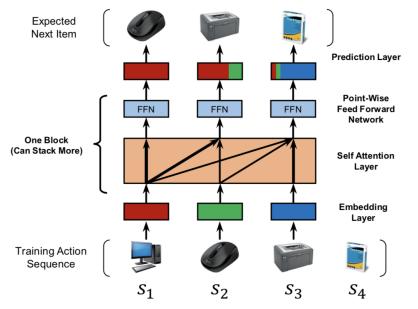


Pros:

CNN structure-model parallelism Residual block: deeper & stronger Dilated CNN: longer and better

[1] A Simple Convolutional Generative Network for Next Item Recommendation. WSDM2019

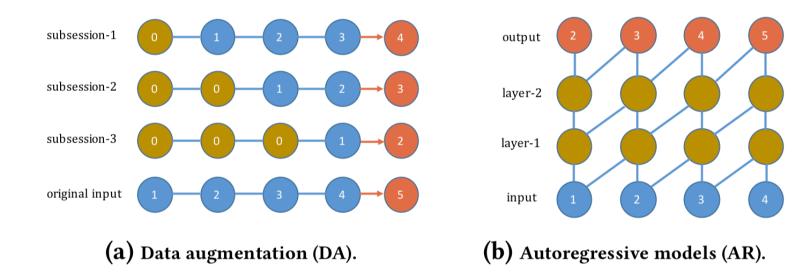
• Attention[1]



Pros: better for utilizing GPU Cons: quadratic complexity, particularly for longer sequeces

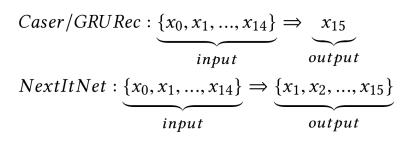
[1] Self-Attentive Sequential Recommendation. ICDM2018

• Training Method (Left-to-Right-Style) for Long Sequences

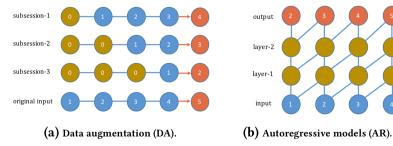


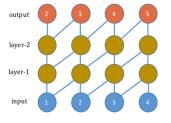
Future Data Helps Training: Tencent 腾讯

Data augmentation & Autoregressive



Caser/GRURec sub - session - 1 : $\{x_{-1}, x_0, \dots, x_{13}\} \Rightarrow x_{14}$ Caser/GRURec sub - session - 2 : $\{x_{-1}, x_{-1}, \dots, x_{12}\} \Rightarrow x_{13}$ Caser/GRURec sub - session - 12 : $\{x_{-1}, x_{-1}, ..., x_2\} \Rightarrow x_3$





No future data is used when modeling a prediction function during training!

• Is a strict order necessary? Seems Not

My watching session in Tik Tok

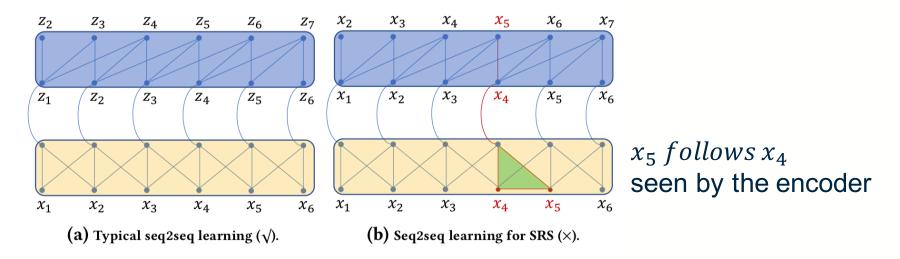
Fine to me if changing the playing order

- Is a strict order necessary?
 - My purchase session in Alibaba
 - phone-->phone case--> earphone--> screen protector
 - An alternative purchase session for me
 - phone--> screen protector --> earphone--> phone case Also fine to me!
 - phone--> earphone--> screen protector --> phone case

• Modeling two-side contexts

Modeling Future interactions could help build better prediction function Allievate data sparsity

• Modeling two-side contexts straightly causes data leakage



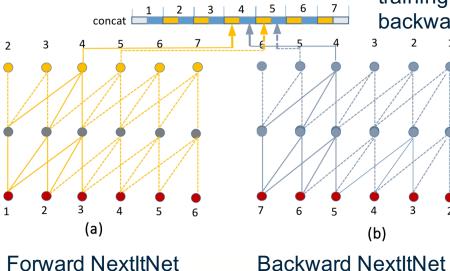
• Other trivial methods:

$$NextItNet + : \underbrace{\{x_1, ..., x_{t-1}\}}_{input} \Rightarrow \underbrace{\{x_2, ..., x_t\}}_{output}$$
$$\underbrace{\{x_t, ..., x_2\}}_{input} \Rightarrow \underbrace{\{x_{t-1}, ..., x_1\}}_{output}$$

• Drawbacks

- (1) Using the same set of parameters to model two side contexts is not accurate
- (2) Modeling the left & right context separately is suboptimal, and has mutual interference

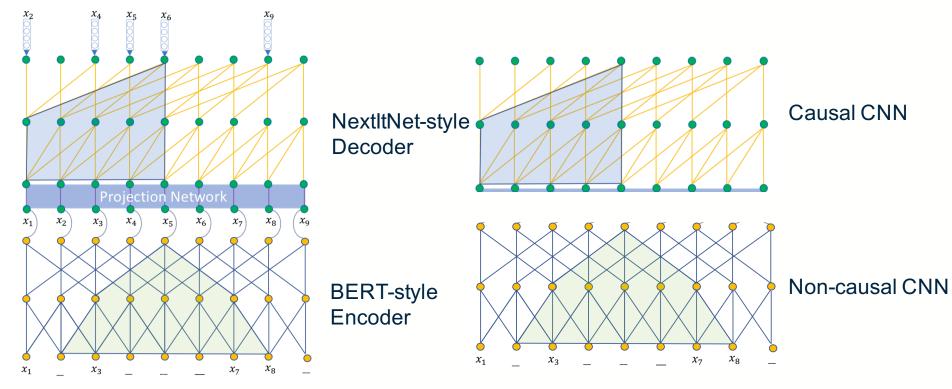
• Other trivial methods:



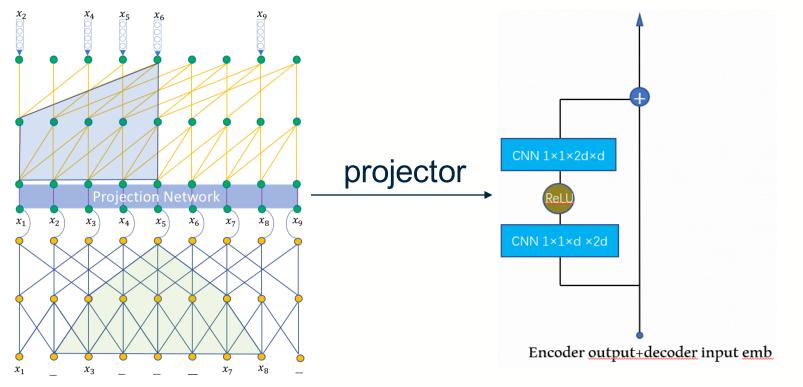
Drawbacks:

training & inference has discrepancies since backward network is useless during inference

• Our solution: GRec

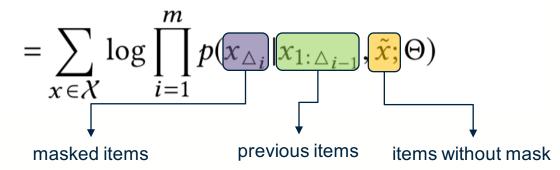


• Our solution: GRec



• GRec:

$$G(\mathcal{X}; \Theta) = \sum_{x \in \mathcal{X}} \log p(x_{\Delta} | \tilde{x}; \Theta)$$



Masked items are predicted given its previous items and other items without masking

• Grec vs. NextItNet:

$$NextItNet: \{x_{1}, x_{2}, x_{3}, ..., x_{7}, x_{8}\} \Rightarrow \{x_{2}, x_{3}, x_{4}, ..., x_{8}, x_{9}\}$$

$$decoder input$$

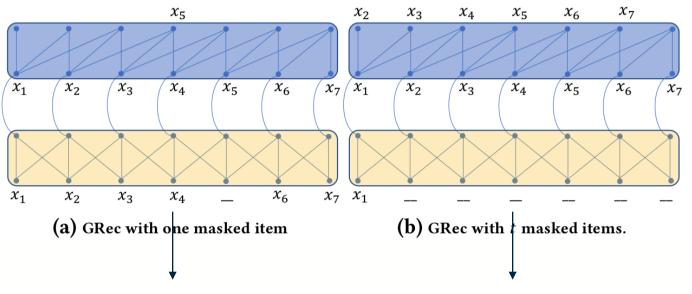
$$GRec: \{x_{1}, _, x_{3}, _, _, ..., x_{7}, x_{8}, _, \} + \{x_{1}, x_{2}, x_{3}, ..., x_{9}\}$$

$$encoder input$$

$$decoder input$$

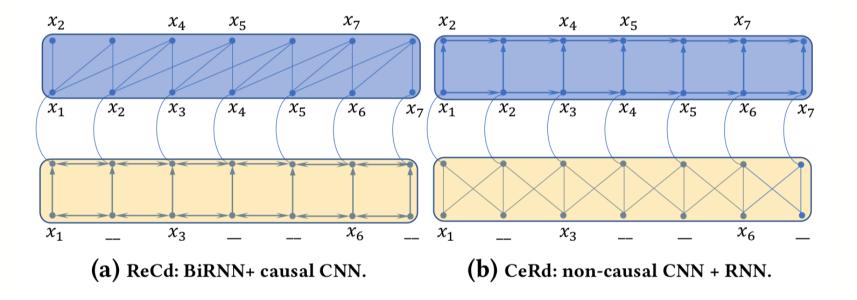
$$decoder input$$

• Connections:



Similar to BERT with a useless decoder Similar to NextItNet, with a useless encoder

• Generality :



• Datasets:

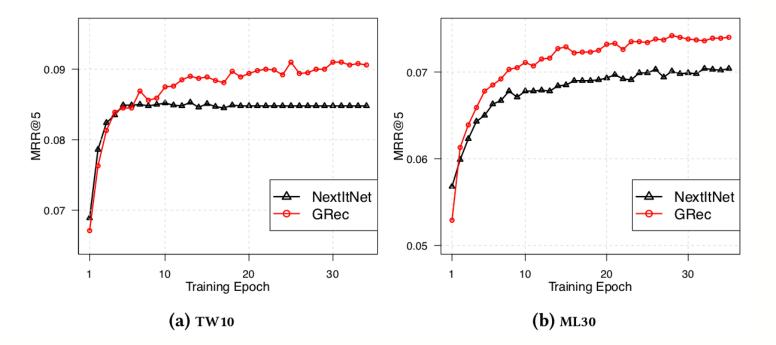
DATA	#actions	#sequences	#items	k
TW10	9,986,953	1,048,575	65,997	10
ML30	25,368,155	858,160	18,273	30
ML100	25,240,741	300,624	18,226	100

• Results compared with baselines:

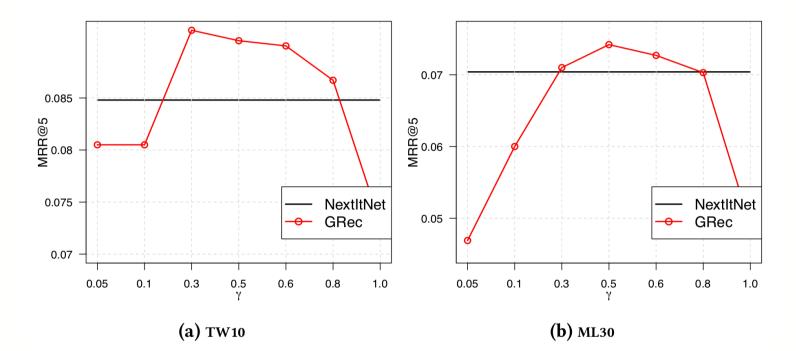
Table 2: Accuracy comparison. MostPop returns item lists ranked by popularity. For each measure, the best result is indicated in bold.

DATA	Models	MRR@5	MRR@20	HR@5	HR@20	NDCG@5	NDCG@20
	MostPop	0.0055	0.0127	0.0203	0.0970	0.0091	0.0305
TW10	Caser	0.0780	0.0916	0.1330	0.2757	0.0916	0.1317
	GRU4Rec	0.0786	0.0926	0.1325	0.2808	0.0919	0.1335
	NextItNet	0.0848	0.0992	0.1408	0.2931	0.0986	0.1414
	NextItNet+	0.0698	0.0844	0.1214	0.2775	0.0825	0.1218
	tNextItNet	0.0813	0.0958	0.1376	0.2896	0.0953	0.1380
	GRec	0.0901	0.1046	0.1498	0.3021	0.1049	0.1477
ML30	MostPop	0.0030	0.0058	0.0098	0.0405	0.0047	0.0132
	Caser	0.0622	0.0739	0.1074	0.2323	0.0733	0.1083
	GRU4Rec	0.0652	0.0788	0.1156	0.2589	0.0776	0.1179
	NextItNet	0.0704	0.0849	0.1242	0.2756	0.0837	0.1263
	NextItNet+	0.0564	0.0711	0.1051	0.2609	0.0685	0.1121
	tNextItNet	0.0658	0.0795	0.1164	0.2605	0.0782	0.1188
	GRec	0.0742	0.0889	0.1300	0.2850	0.0879	0.1315

• Convergence Results:



• Results with different gap-filling percentage:



• Results with/without projector:

DATA	NextItNet	NextItNetP	GRec	GRecN
TW10	0.0848	0.0843	0.0901	0.0880
ML30	0.0704	0.0702	0.0742	0.0720
ML100	0.0552	0.0558	0.0588	0.0577

• Results with different encoder or decoder networks:

DATA	ReCd	NextItNet	CeRd	GRU
TW10	0.0879	0.0843	0.0876	0.0786
ML30	0.0728	0.0704	0.0712	0.0652
ML100	0.0582	0.0552	0.0571	0.0509

• Thanks!