
A Simple Convolutional Generative Network for Next Item
Recommendation

Fajie Yuan∗
Tencent

Shenzhen, China
fajieyuan@tencent.com

Alexandros Karatzoglou
Telefonica Research
Barcelona, Spain

alexandros.karatzoglou@gmail.com

Ioannis Arapakis
Telefonica Research
Barcelona, Spain

arapakis.ioannis@gmail.com

Joemon M Jose
University of Glagow

Glasgow, UK
joemon.jose@glasgow.ac.uk

Xiangnan He
National University of Singapore

Singapore
xiangnanhe@gmail.com

ABSTRACT
Convolutional Neural Networks (CNNs) have been recently intro-
duced in the domain of session-based next item recommendation.
An ordered collection of past items the user has interacted with in
a session (or sequence) are embedded into a 2-dimensional latent
matrix, and treated as an image. The convolution and pooling opera-
tions are then applied to the mapped item embeddings. In this paper,
we first examine the typical session-based CNN recommender and
show that both the generative model and network architecture are
suboptimal when modeling long-range dependencies in the item
sequence. To address the issues, we introduce a simple, but very
effective generative model that is capable of learning high-level
representation from both short- and long-range item dependencies.
The network architecture of the proposed model is formed of a stack
of holed convolutional layers, which can efficiently increase the
receptive fields without relying on the pooling operation. Another
contribution is the effective use of residual block structure in recom-
mender systems, which can ease the optimization for much deeper
networks. The proposed generative model attains state-of-the-art
accuracy with less training time in the next item recommendation
task. It accordingly can be used as a powerful recommendation
baseline to beat in future, especially when there are long sequences
of user feedback.

ACM Reference Format:
Fajie Yuan, Alexandros Karatzoglou, Ioannis Arapakis, Joemon M Jose,
and Xiangnan He. 2019. A Simple Convolutional Generative Network for
Next Item Recommendation. In The Twelfth ACM International Conference on
Web Search and Data Mining (WSDM ’19), February 11–15, 2019, Melbourne,

∗A Part of work was done while at Telefonica Research, Spain and University of Glasgow, UK.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
WSDM ’19, February 11–15, 2019, Melbourne, VIC, Australia
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5940-5/19/02. . . $15.00
https://doi.org/10.1145/3289600.3290975

VIC, Australia. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
3289600.3290975

1 INTRODUCTION
Leveraging sequences of user-item interactions (e.g., clicks or pur-
chases) to improve real-world recommender systems has become
increasingly popular in recent years. These sequences are automati-
cally generated when users interact with online systems in sessions
(e.g., shopping session, or music listening session). For example,
users on Last.fm1 orWeishi2 typically enjoy a series of songs/videos
during a certain time period without any interruptions, i.e., a lis-
tening or watching session. The set of music videos played in one
session usually have strong correlations [6], e.g., sharing the same
album, writer, or genre. Accordingly, a good recommender system
is supposed to generate recommendations by taking advantage of
these sequential patterns in the session.

A class of models often employed for these sequences of interac-
tions are the Recurrent Neural Networks (RNNs). RNNs typically
generate a softmax output where high probabilities represent the
most relevant recommendations. While effective, these RNN-based
models, such as [3, 15], depend on a hidden state of the entire past
that cannot fully utilize parallel computation within a sequence [8].
Thus their speed is limited in both training and evaluation.

By contrast, training CNNs does not depend on the computations
of the previous time step and therefore allow parallelization over
every element in a sequence. Inspired by the successful use of CNNs
in image tasks, a newly proposed sequential recommender, referred
to as Caser [29], abandoned RNN structures, proposing instead
a convolutional sequence embedding model, and demonstrated
that this CNN-based recommender is able to achieve comparable
or superior performance to the popular RNN model in the top-N
sequential recommendation task. The basic idea of the convolution
processing is to treat the t × k embedding matrix as the “image"
of the previous t interactions in k dimensional latent space and
regard the sequential pattens as local features of the “image". A max
pooling operation that only preserves the maximum value of the
convolutional layer is performed to increase the receptive field, as
well as dealing with the varying length of input sequences. Fig. 1
depicts the key architecture of Caser.

1https://www.last.fm
2http://weishi.qq.com/

https://doi.org/10.1145/3289600.3290975
https://doi.org/10.1145/3289600.3290975
https://doi.org/10.1145/3289600.3290975

Embedding Look-up

Convolutional Layers

Max pooling

Fee
d

fo
rw

ard
 laye

rs

t

(a) (b) (c) (d)

Figure 1: The basic structure ofCaser [29]. The red, yellow and blue
regions denotes a 2×k , 3×k and 4×k convolution filter respectively,
where k = 5. The purple row stands for the true next item.

Considering the training speed of networks, in this paper we
follow the path of sequential convolution techniques for the next
item recommendation task. We show that the typical network ar-
chitecture used in Caser has several obvious drawbacks — e.g.,: (1)
the max pooling scheme that is safely used in computer vision may
discard important position and recurrent signals when modeling
long-range sequence data; (2) generating the softmax distribution
only for the desired item fails to effectively use the compete set of
dependencies. Both drawbacks become more severe as the length of
the sessions and sequences increases. To address these issues, we in-
troduce a simple but fundamentally different CNN-based sequential
recommendation model that allows us to model the complex condi-
tional distributions even in very long-range item sequences. To be
more specific, first our generative model is designed to explicitly
encode item inter-dependencies, which allows to directly estimates
the distribution of the output sequence (rather than the desired
item) over the raw item sequence. Second, instead of using ineffi-
cient huge filters, we stack the 1D dilated convolutional layers [31]
on top of each other to increase the receptive fields when modeling
long-range dependencies. The pooling layer can be safely removed
in the proposed network structure. It is worth noting that although
the dilated convolution was invented for dense prediction in image
generation tasks [4, 26, 31], and has been applied in other fields (e.g.,
acoustic [22, 26] and translation [18] tasks), it is yet unexplored in
recommender systems with huge sparse data. Furthermore, to ease
the optimization of the deep generative architecture, we propose
using residual network to wrap convolutional layer(s) by residual
block. To the best of our knowledge, this is also the first work in
terms of adopting residual learning to model the recommendation
task. The combination of these choices enables us to tackle large-
scale problems and attain state-of-the-art results in both short- and
long-range sequential recommendation data sets. In summary, our
main contributions include a novel recommendation generative
model (Section 3.1) and a fundamentally different convolutional
network architecture (Sections 3.2 ∼ 3.4).

2 PRELIMINARIES
First, the problem of recommending items from sequences is de-
scribed. Next, a recent convolutional sequence embedding recom-
mendation model (Caser) is shortly recapitulated along with its

limitations. Lastly, we review previous work on sequence-based
recommender systems.

2.1 Top-N Session-based Recommendation
Let {x0,x1, ...,xt−1,xt } (interchangeably denoted by x0:t) be an
user-item interaction sequence (or a session), where xi ∈ R (0 ≤ i ≤
t) is the index of the clicked item out of a total number of t +1 items
in the sequence. The goal of sequential recommendation is to seek
a model such that for a given prefix item sequence, x = {x0, ...,xi }
(0 ≤ i < t), it generates a ranking or classification distribution y for
all candidate items, where y = [y1, ...,yn] ∈ Rn . yj can be a score,
probability or a rank of item i + 1 that will occur in this sequence.
In practice, we typically make more than one recommendation by
choosing the top-N items from y, referred to as the top-N session-
based (sequential) recommendations.

2.2 Limitations of Caser
The basic idea of Caser is to embed the previous t items as a t × k
matrix E by the embedding look-up operation, as shown in Fig. 1 (a).
Each row vector of the matrix corresponds to the latent features of
one item. The embedding matrix can be regarded as the “image" of
the t items in the k-dimensional latent space. Intuitively, models
of various CNNs that are successfully applied in computer vision
can be adapted to model the “image" of an item sequence. How-
ever, there are two aspects that differentiate sequence modeling
from image processing, which makes the use of CNN based models
non-straightforward. First, the variable-length item sequences in
real-world scenarios produce a large number of “images" of differ-
ent sizes, where traditional convolutional structures with fix-sized
filters may fail. Second, the most effective filters for images, such as
3 × 3 and 5 × 5, are not suitable for sequence “images" since these
small filters (in terms of row-wise orientation) are not suitable to
capture the representations of full-width embedding vectors.

To address the above limitations, filters in Caser slide over full
columns of the sequence “image” by large filter. That is, the width
of filters is usually the same as the width of the input “images". The
height typically varies by sliding windows over 2−5 items at a time
(Fig. 1 (a)). Filters of different sizes will generate variable-length
feature maps after convolution (Fig. 1 (b)). To ensure that all maps
have the same size, the max pooling is performed over each map,
which selects only the largest number of each feature map, resulting
in a 1 × 1 map (Fig. 1 (c)). Finally, these 1 × 1 maps from all filters
are concatenated to form a feature vector, followed by a softmax
layer that yields the probabilities of next item (Fig. 1 (d)). Note that
we have omitted the vertical convolution in Fig. 1, since it does not
solve the major problems discussed below.

Based on the above analysis of the convolutions in Caser, one
may find that there exist several drawbacks with the current design.
First, the max pooling operator has obvious disadvantages. It cannot
distinguish whether an important feature in the map occurs just
one or multiple times and it ignores the position in which it occurs.
The max pooling operator while safely used in image processing
(with small pooling filters, e.g., 3 × 3) may be harmful for modeling
long-range sequences (with large filters, e.g., 1 × 20). Second, the
shallow network structure in Caser that suits for only one hidden

convolutional layer is likely to fail when modeling complex rela-
tions or long-range dependences. The last important disadvantage
comes from the generative process of next item, which we will
describe in detail in Section 3.1.

2.3 Related Work
Early work in sequential recommendations mostly rely on the
markov chain [5] and feature-based matrix factorization [12, 32–34]
approaches. Compared with neural network models, the markov
chain based approaches fail to model complicated relations in the se-
quence data. For example, in Caser, the authors showed that markov
chain approaches failed to model union-level sequential patterns
and did not allow skip behaviors in the item sequences. Factor-
ization based approaches such as factorization machines model a
sequence by the sum of its item vectors. However, these methods
do not consider the order of items and are not specifically invented
for sequential recommendations.

Recently, deep learning models have shown state-of-the-art rec-
ommendation accuracy in contrast to conventional models. More-
over, RNNs, a class of deep neural networks, have almost dominated
the area of sequential recommendations. For example, a Gated Re-
current Unit (GRURec) architecture with a ranking loss was pro-
posed by [15] for session-based recommendation. In the follow-up
papers, various RNN variants have been designed to extend the
typical one for different application scenarios, such as by adding
personalization [25], content [9] and contextual features [27], at-
tention mechanism [7, 20] and different ranking loss functions [14].

By contrast, CNN based sequential recommendation models are
more challenging and much less explored because convolutions
are not a natural way to capture sequential patterns. To our best
knowledge, only two types of sequential recommendation archi-
tectures have been proposed to date: the first one by Caser is a
standard 2D CNN, while the second is a 3D CNN [30] designed
to model high-dimensional features. Unlike the aforementioned
examples, we plan to investigate the effects of 1D CNNs with ef-
ficient dilated convolution filters and residual blocks for building
the recommendation architecture.

3 MODEL DESIGN
To address the above limitations, we introduce a new probabilistic
generative model that is formed of a stack of 1D convolution layers.
We first focus on the form of the distribution, and then the architec-
tural innovations. Generally, our proposed model is fundamentally
different from Caser in several key ways: (1) our probability esti-
mator explicitly models the distribution transition of all individual
items at once, rather than the final one, in the sequence; (2) our
network has a deep, rather than shallow, structure; (3) our convo-
lutional layers are based on the efficient 1D dilated convolution
rather than standard 2D convolution; and (4) pooling layers are
removed.

3.1 A Simple Generative Model
In this section, we introduce a simple yet very effective generative
model directly operating on the sequence of previous interacted
items. Our aim is to estimate a distribution over the original item
interaction sequences that can be used to tractably compute the

likelihood of the items and to generate the future items that users
would like to interact. Let p (x) be the joint distribution of item
sequence x = {x0, ...,xt }. To model p (x), we can factorize it as a
product of conditional distributions by the chain rule.

p (x) =
t∏
i=1

p (xi |x0:i−1,θ)p (x0) (1)

where the value p (xi |x0:i−1,θ) is the probability of i-th item xi
conditioned on all the previous items x0:i−1. A similar setup has
been explored by NADE [19], PixelRNN/CNN [23, 24] in biological
and image domains.

Owing to the ability of neural networks in modeling complex
nonlinear relations, in this paper we model the conditional distribu-
tions of user-item interactions by a stack of 1D convolutional net-
works. To be more specific, the network receives x0:t−1 as the input
and outputs distributions over possible x1:t , where the distribution
of xt is our final expectation. For example, as illustrated in Fig. 2, the
output distribution of x15 is determined by x0:14, while x14is deter-
mined by x0:13. It is worth noting that in previous sequential recom-
mendation literatures, such as Caser, GRURec and [20, 25, 28, 30],
they only model a single conditional distribution p (xi |x0:i−1,θ)
rather than all conditional probabilities∏t

i=1 p (xi |x0:i−1,θ)p (x0).
Within the context of the above example, assuming {x0, ...,x14} is
given, models like Caser only estimate the probability distribution
(i.e., softmax) of the next item x15 (also see Fig. 1 (d)), while our gen-
erative method estimates the distributions of all individual items
in {x1, ...,x15}. The comparison of the generating process is shown
below.

Caser/GRURec : {x0,x1, ...,x14}︸ ︷︷ ︸
input

⇒ x15︸︷︷︸
output

Ours : {x0,x1, ...,x14}︸ ︷︷ ︸
input

⇒ {x1,x2, ...,x15}︸ ︷︷ ︸
output

(2)

where⇒ denotes ‘predict’. Clearly, our proposed model is more
effective in capturing the set of all sequence relations, whereas
Caser and GRURec fail to explicitly model the internal sequence
features between {x0, ...,x14}. In practice, to address the drawback,
such models will typically generate a number of sub-sequences
(or sub-sessions) for training by means of data augmentation tech-
niques [28] (e.g., padding, splitting or shifting the input sequence),
such as shown in Eq. (3) (see [20, 25, 29, 30]).

Caser/GRURec sub − session − 1 : {x−1,x0, ...,x13} ⇒ x14
Caser/GRURec sub − session − 2 : {x−1,x−1, ...,x12} ⇒ x13

......

Caser/GRURec sub − session − 12 : {x−1,x−1, ...,x2} ⇒ x3

(3)

While effective, the above approach to generate sub-session cannot
guarantee the optimal results due to the separate optimization for
each sub-session. In addition, optimizing these sub-sessions sepa-
rately will result in corresponding computational costs. Detailed
comparison with empirical results has also been reported in our
experimental sections.

Input

Conv:1
r=3

Conv:2
r=5

Conv:3
r=7

item 0 1 2 3 4 5 6

1 2 3 4 5 6 7
item

Standard Conv1D 1×3

 Sampled

 Softmax

 FC

Layer

(a) Standard CNN

item 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
item

Conv1D: 1×3
𝑙=2

Conv1D: 1×3
𝑙=4

Sampled
Softmax

 FC

Layer

Input
𝑙=1

Conv:1
𝑙=2
r=3

Conv:2
𝑙=4
r=7

Conv:3
𝑙=8
r=15

(b) Dilated CNN with ‘Holes’

Figure 2: The proposed generative architecture with 1D standard CNNs (a) and efficient dilated CNNs (b). The blue lines are the identity map
which exists only for residual block (b) in Fig. 3. An example of a standard 1D convolution filter and dilated filters are shown at the bottom
of (a) and (b) respectively. We will refer to a dilated convolution with a dilation factor l as l -dilated convolution. Apparently, compared with
the standard CNN that linearly increases the receptive field by the depth of the network, the dilated CNN has a much larger receptive field by
the same stacks without introducing more parameters. It can be seen that the standard convolution is a special case of 1-dilated convolution.

3.2 Network Architecture
3.2.1 Embedding Look-up Layer: Given an item sequence {x0, ...,xt },
the model retrieves each of the first t items {x0, ...,xt−1} via a look-
up table, and stacks these item embeddings together. Assuming
the embedding dimension is 2k , where k can be set as the number
of inner channels in the convolutional network. This results in a
matrix of size t × 2k . Note that unlike Caser that treats the input
matrix as a 2D “image" during convolution, our proposed architec-
ture learns the embedding layer by 1D convolutional filters, which
we will describe later.

3.2.2 Dilated layer: As shown in Fig. 2 (a), the standard filter is
only able to perform convolution with the receptive field linearly
by the depth of the network. This makes it difficult to handle long-
range sequences. Similar to Wavenet [22], we employ the dilated
convolution to construct the proposed generative model. The basic
idea of dilation is to apply the convolutional filter over a field larger
than its original length by dilating it with zeros. As such, it is more
efficient since it utilizes fewer parameters. For this reason, a dilated
filter is also referred to as a holed or sparse filter. Another benefit is
that dilated convolution can preserve the spatial dimensions of the
input, which makes the stacking operation much easier for both
convolutional layers and residual structures.

Fig. 2 shows the network comparison between the standard con-
volution and dilated convolutions with the proposed sequential
generative model. The dilation factor in (b) are 1, 2, 4 and 8. To
describe the network architecture, we denote receptive field, j-th
convolutional layer, channel and dilation as r , Fj , C and l respec-
tively. By setting the width of convolutional filter f as 3, we can

see that the dilated convolutions (Fig. 2 (b)) allow for exponential
increase in the size of receptive fields (r = 2j+1 − 1), while the same
stacking structure for the standard convolution (Fig. 2 (a)) has only
linear receptive fields (r = 2j + 1). Formally, with dilation l , the
filter window from location i is given as

[
xi xi+l xi+2l ... xi+(f −1) ·l

]

and the 1D dilated convolution operator ∗l on element h of the item
sequence is given below

(x ∗l д) (h) =
f −1∑
i=0

xh−l ·i · д(i) (4)

where д is the filter function. Clearly, the dilated convolutional
structure is more effective to model long-range item sequences, and
thus more efficient without using larger filters or becoming deeper.
In practice, to further increase the model capacity and receptive
fields, one just need to repeat the architecture in Fig. 2 multiple
times by stacking, e.g., 1, 2, 4, 8, 1, 2, 4, 8.

3.2.3 One-dimensional Transformation: Although our dilated con-
volution operator depends on the 2D input matrix E, the proposed
network architecture is actually composed of all 1D convolutional
layers. To model the 2D embedding input, we perform a simple
reshape operation, which serves as a prerequisite for performing
1D convolution. Specifically, the 2Dmatrix E is reshaped from t×2k
to a 3D tensorT of size 1× t × 2k , where 2k is treated as the “image”
channel rather than the width of the standard convolution filter in
Caser. Fig. 3 (b) illustrates the reshaping process.

0 1 2 3 4

1 2 3 4 5

√
0 1 2 3 4

1 2 3 4 5

×
3 0 1 2 4

1 2 3 4 5

×
0 1 2 3 4

1 2 3 4 5

√
-1 -1 -1 -1

padding masking
(a) (b) (c) (d)

-1

padding

3 0 1 2 4

5 6 -1 -1 -1

√
(e)

-1 -1 -1

padding

Figure 4: The future item can only be determined by the past ones according to Eq. (1). (a) (d) and (e) show the correct convolution process,
while (b) and (c) are wrong. E.g., in (d), items of {1, 2, 3, 4} are masked when predicting 1, which can be technically implemented by padding.

1×1

+

Masked 1×3

Normalization

ReLU

Input E

Normalization

1×1

Normalization

2𝑘

 E

identity
F(E)+E

F(E) 2𝑘

𝑘

ReLU

ReLU

(a)

+

Masked 1×3

Normalization

ReLU

Input E

Masked 1×3

2𝑘

 E

identity
F(E)+E

F(E) 2𝑘

ReLU

Normalization

(b)

t

Dilated
Conv1D：
(1×3, 2k)

2k

t

Shape (t×2k, 1)

Standard
Conv2D
(3×2k,1)

1

Shape (1×t, 2k)

(c) One-dimensional Transformation

Figure 3:Dilated residual blocks (a), (b) and one-dimensional trans-
formation (c). (c) shows the transformation from the 2D filter (C =
1)(left) to the 1D 2-dilated filter (C = 2k) (right); the vertical black
arrows represent the direction of the sliding convolution. In this
work, the default stride for the dilated convolution is 1. Note the re-
shape operation in (b) is performed before each convolution in (a)
and (b) (i.e., 1 × 1 and masked 1 × 3), which is then followed by a
reshape back step after convolution.

3.3 Masked Convolutional Residual Network
Although increasing the depth of network layers can help obtain
higher-level feature representations, it also easily results in the
vanishing gradient issue, which makes the learning process much
harder. To address the degradation problem, residual learning [10]
has been introduced for deep networks. While residual learning
has achieved huge success in the domain of computer vision, it has
not appeared in the recommender system literature.

The basic idea of residual learning is to stack multiple convolu-
tional layers together as a block and then employ a skip connection
scheme that passes the previous layers’s feature information to its
posterior layer. The skip connection scheme allows to explicitly
fit the residual mapping rather than the original identity mapping,
which canmaintain the input information and thus enlarge the prop-
agated gradients. Formally, denoting the desired mapping as H (E),
we let the residual block fit another mapping of F (E) = H (E) − E.
The desired mapping now is recast into F (E) + E by element-wise
addition (assuming that F (E) and E are of the same dimension).
As has been evidenced in [10], optimizing the residual mapping
F (E) is much easier than the original, unreferenced mapping H (E).
Inspired by [11, 18], we introduce two residual modules in Fig. 3 (a)
and (b).

In (a), we wrap each dilated convolutional layer by a residual
block, while in (b) we wrap every two dilated layers by a different
residual block. That is, with the design of block (b), the input layer
and the second convolutional layer should be connected by skip
connection (i.e., the blue lines in Fig. 2). Specifically, each block
is made up of the normalization, activation (e.g., ReLU [21]), con-
volutional layers and a skip connection in a specific order. In this
work we adopt the state-of-the-art layer normalization [1] before
each activation layer, as it is well suited to sequence processing and
online learning in contrast with batch normalization [16].

Regarding the properties of the two residual networks, the resid-
ual block in (a) consists of 3 convolution filters: one dilated filter of
size 1 × 3 and two regular filters of size 1 × 1. The 1 × 1 filters are
introduced to change the size of C so as to reduce the parameters
to be learned by the 1× 3 kernel. The first 1× 1 filter (close to input
E in Fig. 3 (a)) is to change C from 2k to k , while the second 1 × 1
filter does the opposite transformation in order to maintain the
spatial dimensions for the next stacking operation. To show the
effectiveness of the 1 × 1 filters in (a), we compute the number of
parameters in both (a) and (b). For simplicity, we omit the activation
and normalization layers. As we can see, the number of parameters
for the 1 × 3 filter is 1 × 3 × 2k × 2k = 12k2 (i.e., in (b)) without the
1 × 1 filters. While in (a), the number of parameters to be learned is
1 × 1 × 2k × k + 1 × 3 × k × k + 1 × 1 × k × 2k = 7k2. The residual
mapping F (E, {Wi }) in (a) and (b) is formulated as:

F (E, {Wi }) =

W3 (σ (ψ (W2 (σ (ψ (W1 (σ (ψ (E)))))))))) Fig.3 (a)
σ (ψ (W ′4 (σ (ψ (W

′
2 (E))))) Fig.3 (b)

(5)
where σ andψ denote ReLU and layer-normalization,W1 andW3
denote the convolution weight function of standard 1 × 1 convolu-
tions, andW2,W ′2 andW ′4 denote the weight function of l-dilated
convolution filter with size of 1×3. Note that bias terms are omitted
for simplifying notations.

3.3.1 Dropout-mask: To avoid the future information leakage prob-
lem, we propose a masking-based dropout trick for the 1D dilated
convolution to prevent the network from seeing the future items.
Specifically, when predicting p (xi |x0:i−1), the convolution filters
are not allowed to make use of the information from xi :t . Fig. 4
shows several different ways to perform convolution. As shown, our
dropout-masking operation can be implemented either by padding
the input sequence in (d) or shifting the output sequence by a few
timesteps in (e). The padding method in (e) is very likely to result
in information loss in a sequence, particularly for short sequences.

Hence in this work, we apply the padding strategy in (d) with the
padding size of (f − 1) ∗ l .

3.4 Final Layer, Network Training and
Generating

As mentioned, the matrix in the last layer of the convolution archi-
tecture (see Fig. 2), denoted by Eo , preserves the same dimensional
size of the input E, i.e., Eo ∈ Rt×2k . However, the output should be
a matrix or tensor that contains probability distributions of all items
in the output sequence x1:t , where the probability distribution of
xt is the desired one that generates top-N predictions. To do this,
we can simply use one more convolutional layer on top of the last
convolutional layer in Fig. 2 with filter of size 1×1×2k ×n, where n
is the number of items. Following the procedure of one-dimensional
transformation in Fig. 3 (c), we obtain the expected ouput matrix
Ep ∈ Rt×n , where each row vector after the softmax operation
represents the categorical distribution over xi (0 < i ≤ t).

The aim of optimization is to maximize the log-likelihood of the
training dataw.r.t.θ . Clearly, maximizing logp (x) is mathematically
equivalent to minimizing the sum of the binary cross-entropy loss
for each item in x1:t . For practical recommender systems with tens
of millions items, the negative sampling strategy can be applied
to bypasses the generation of full softmax distributions, where
the 1 × 1 convolutional layer is replaced by a fully-connected (FC)
layer with weight matrix Eд ∈ R2k×n . For example, we can apply
either the sampled softmax [17] or kernel based sampling [2]. The
recommendation accuracy by these negative sampling strategies is
nearly identical with the full softmax method with properly tuned
sampling size.

For comparison purpose, we only predict the next one item in
our evaluation, and then stop the generating process. Nevertheless,
the model is able to generate a sequence of items simply by feeding
the predicted one item (or sequence) into the network to predict
the next one, and thus the prediction at the generating phrase is se-
quential. This matches most real-world recommendation scenarios,
where the next action is followed when the current one has been
observed. But at both training and evaluation phases, the condi-
tional predictions for all timesteps can be made in parallel, because
the complete sequence of input items x is already available.

4 EXPERIMENTS
In this section we detail our experiments, report results for several
data sets, and compare our model (called NextItNet) with the well-
known RNN-based model GRURec [15, 28] and the state-of-the-art
CNN-based model Caser. Note that (1) since the main contributions
in this paper do not focus on combining various features, we omit
the comparison with content- or context-based sequential recom-
mendation models, such as the 3D CNN recommender [30] and
other RNN variants [9, 20, 25, 27]; (2) the GRURec baseline could
be regarded as the state-of-the-art Improved GRURec [28] when
dealing with the long-range session data sets because our main
data augmentation technique for the two baseline models follows
the same way in Improved GRURec.

Table 4: Effects of sub-session in terms ofMRR@5. The upper, mid-
dle and below tables represent GRU, Caser and NextItNet respec-
tively. “10”,“20”,“50” and “100” are the session lengths.

Sub-session 10 20 50 100

Without 0.1985 0.1645 0.1185 0.0746
With 0.2124 0.2327 0.2067 0.2086

Without 0.1571 0.1012 0.0216 0.0084
With 0.2214 0.1947 0.2060 0.2080

Without 0.2596 0.2748 0.2735 0.2583

Table 5: Effects of the residual block in terms of MRR@5. “With-
out” means no skip connection. “M5”, “L5”, “L10” and “L50” denote
MUSIC_M5 , MUSIC_L5 , MUSIC_L10 and MUSIC_L50 respectively.

DATA M5 L5 L10 L50

Without 0.2968 0.2146 0.2292 0.2432
With 0.3300 0.2455 0.2645 0.2760

4.1 Datasets and Experiment Setup
4.1.1 Datasets and Preprocessing. The first data set ‘Yoochoose-
buys’ (YOO for short) is chosen from the RecSys Challenge 20153.
We use the buying dataset for evaluation. For preprocessing, we
filter out sessions of length shorter than 3. Meanwhile, we find that
in the processed Yoo data 96% sessions have a length shorter than
10, and we simply remove the 4% longer sessions and refer it as a
short-range sequential data.

The remaining data sets are extracted fromLast.fm4: onemedium-
size (MUSIC_M) and one large-scale (MUSIC_L) collection by ran-
domly drawing 20,000 and 200,000 songs respectively. In the Last.fm
data set, we observe that most users listen to music several hundred
times a week, and some even listen to more than one hundred songs
within a day. Hence, we are able to test our model in both short-
and long-range sequences by cutting up these long-range listening
sessions. In MUSIC_L, we define the maximum session length t as
5, 10, 20, 50 and 100, and then extract every t successive items as
our input sequences. This is done by sliding a window of both size
and stride of t over the whole data. We ignore sessions in which
the time span between the last two items is longer than 2 hours.
In this way, we create 5 data sets, referred to as RAW-SESSIONS.
We randomly split these RAW-SESSIONS data into training (50%),
validation (5%), and testing (45%) sets.

As mentioned before, the performance of Caser and GRURec is
supposed to degrade significantly for long sequence inputs, such
as when t = 20, 50 and 100. For example, when setting t = 50,
Caser and GRURec will predict x49 by using x0:48, but without ex-
plicitly modeling the item inter-dependencies between x0 and x48.
To remedy this defect, when t > 5, we follow the common approach
[20, 28] by manually creating additional sessions from the training
sets of RAW-SESSIONS so that Caser and GRURec can leverage the
full dependency to a large extent. Still setting t = 50, one train-
ing session will then produce 45 more sub-sessions by padding

3http://2015.recsyschallenge.com/challenge.html
4http://www.dtic.upf.edu/ ocelma/MusicRecommendationDataset/lastfm-1K.html

Table 1: Session statistics of all data sets.

DATA YOO MUSIC_M5 MUSIC_L5 MUSIC_L10 MUSIC_L20 MUSIC_L50 MUSIC_L100

RAW-SESSIONS 0.14M 0.61M 2.14M 1.07M 0.53M 0.21M 0.11M
SUB-SESSIONS-T 0.07M 0.31M 1.07M 3.21M 4.28M 4.91M 5.10M
MUSIC_M5 denotes MUSIC_M with maximum session size of 5. The same applies to MUSIC_L. ‘M’ denotes 1 million.

Table 2: Accuracy comparison. The upper, middle and below tables are MRR@5, HR@5 and NDCG@5 respectively.

DATA YOO MUSIC_M5 MUSIC_L5 MUSIC_L10 MUSIC_L20 MUSIC_L50 MUSIC_L100

MostPop 0.0050 0.0024 0.0006 0.0007 0.0008 0.0007 0.0007
GRURec 0.1645 0.3019 0.2184 0.2124 0.2327 0.2067 0.2086
Caser 0.1523 0.2920 0.2207 0.2214 0.1947 0.2060 0.2080
NextItNet 0.1715 0.3133 0.2327 0.2596 0.2748 0.2735 0.2583

MostPop 0.0151 0.0054 0.0014 0.0016 0.0016 0.0016 0.0016
GRURec 0.2773 0.3610 0.2626 0.2660 0.2694 0.2589 0.2593
Caser 0.2389 0.3368 0.2443 0.2631 0.2433 0.2572 0.2588
NextItNet 0.2871 0.3754 0.2695 0.3014 0.3166 0.3218 0.3067

MostPop 0.0075 0.0031 0.0008 0.0009 0.0010 0.0009 0.0009
GRURec 0.1923 0.3166 0.2294 0.2258 0.2419 0.2197 0.2212
Caser 0.1738 0.3032 0.2267 0.2318 0.2068 0.2188 0.2207
NextItNet 0.2001 0.3288 0.2419 0.2700 0.2853 0.2855 0.2704
MostPop returns the most popular item respectively. Regarding the setup of our model, we use two-hidden-layer convolution structure with dilation factor 1, 2, 4 for the first four data sets
(i.e., YOO, MUSIC_M5 , MUSIC_L5 and MUSIC_L10), while for the last three long-range sequence data sets, we use 1, 2, 4, 8, 1, 2, 4, 8, to obtain above results.

Table 3: Accuracy comparison. The upper, middle and below tables are MRR@20, HR@20 and NDCG@20 respectively.

DATA YOO MUSIC_M5 MUSIC_L5 MUSIC_L10 MUSIC_L20 MUSIC_L50 MUSIC_L100

MostPop 0.0090 0.0036 0.0009 0.0010 0.0011 0.0011 0.0011
GRURec 0.1839 0.3103 0.2242 0.2203 0.2374 0.2151 0.2162
Caser 0.1660 0.2979 0.2234 0.2268 0.2017 0.2133 0.2153
NextItNet 0.1901 0.3223 0.2375 0.2669 0.2815 0.2794 0.2650

MostPop 0.0590 0.0180 0.0052 0.0053 0.0056 0.0056 0.0056
GRURec 0.4603 0.4435 0.3197 0.3434 0.3158 0.3406 0.3336
Caser 0.3714 0.3937 0.2703 0.3150 0.3110 0.3273 0.3298
NextItNet 0.4645 0.4626 0.3159 0.3709 0.3814 0.3789 0.3731

MostPop 0.0195 0.0066 0.0018 0.0019 0.0021 0.0020 0.0020
GRURec 0.2460 0.3405 0.2460 0.2481 0.2553 0.2433 0.2427
Caser 0.2122 0.3197 0.2342 0.2469 0.2265 0.2392 0.2412
NextItNet 0.2519 0.3542 0.2554 0.2904 0.3041 0.3021 0.2895

the beginning and removing the end indices, referred to as SUB-
SESSIONS. The example of the 45 sub-sessions are given as follows:
{x−1,x0,x1, ...,x48}, {x−1,x−1,x0, ...,x47},..., {x−1,x−1,x−1, ...,x4}.
Regarding MUSIC_M, we only show the results when t = 5. We
show the statistics of RAW-SESSIONS& training data of SUB-SESSIONS
(i.e., SUB-SESSIONS-T) in Table 1.

All models were trained on GPUs (TITAN V) using Tensorflow.
The learning rates and batch sizes of baseline methods were man-
ually set according to performance in validation sets. For all data
sets, NextItNet used the learning rate of 0.001 and batch size of
32. Embedding size 2k is set to 64 for all models without special
mention. We report results with residual block (a) and full softmax.
We have validated the performance of results block (b) separately.

To further evaluate the effectiveness of the two residual blocks, we
have also tested our model in another dataset, namely, Weishi5. The
improvements are about two times compared with the same model
without residual blocks.

4.1.2 Evaluation Protocols. We reported the evaluated results by
three popular top-N metrics, namely MRR@N (Mean Reciprocal
Rank) [15], HR@N (Hit Ratio) [13] and NDCG@N [34] (Normalized
Discounted Cumulative Gain). N is set to 5 and 20 for comparison.
We evaluate the prediction accuracy of the last (i.e., next) item of
each sequence in the testing set, similarly to [14].

5We are working to release this dataset, which has very good sequential property.

0 2 4 6 8 10 12 14

4

6

8

10

12

training instances

A
vg

 lo
ss

NextItNet g=256k
Caser g=256k
GRU g=256k

(a) Loss

0 2 4 6 8 10 12 14

0

0.08

0.16

0.24

training instances

M
R

R
@

10
0

NextItNet g=256k
Caser g=256k
GRU g=256k

(b) MRR@5

0 2 4 6 8 10 12 14

0

0.1

0.2

0.3

training instances

H
R

@
10

0

NextItNet g=256k
Caser g=256k
GRU g=256k

(c) HR@5

0 2 4 6 8 10 12 14

0

0.08

0.16

0.24

0.32

training instances

N
D

C
G

@
10

0

NextItNet g=256k
Caser g=256k
GRU g=256k

(d) NDCG@5

Figure 5: Convergence behaviors of MUSIC_L100. GRU is short for GRURec. д = 256k means the number of training sequences (or sessions)
of one unit in x-axis is 256k. Note that (1) to speed up the experiments, all of the convergence tests are evaluated on the first 1024 sessions in
the testing set; (2) only NextItNet has converged in above figures, while GRU and Caser require more training instances for convergence.

Table 6: Effects (MRR@5) of increasing embedding size. The upper
and below tables are MUSIC_M5 andMUSIC_L100 respectively.

2k 16 32 64 128

GRURec 0.2786 0.2955 0.3019 0.3001
Caser 0.2855 0.2982 0.2979 0.2958
NextItNet 0.2793 0.3063 0.3133 0.3183

GRURec 0.1523 0.1826 0.2086 0.2043
Caser 0.0643 0.1129 0.2080 0.2339
NextItNet 0.1668 0.2289 0.2583 0.2520

4.2 Results Summary
Overall performance results of all methods are illustrated in Ta-
ble 2 and 3, which clearly show that the neural network models
(i.e., Caser, GRURec and our model) obtain very promising accu-
racy in the top-N sequential recommendation task. For example, in
MUSIC_M5, the three neural models perform more than 120 times
better on MRR@5 thanMostPop, which is a widely used recommen-
dation benchmark. The best MRR@20 result we have achieved by
NextItNet is 0.3223 in this data set, which roughly means that the
desired item is ranked on position 3 in average among the 20,000
candidate items. We then find that among these neural network
based models, NextItNet largely outperforms Caser & GRURec. We
believe there are several reasons contributing to the state-of-the-art
results. First, as highlighted in Section 3.1, NextItNet takes full ad-
vantage of the complete sequential information. This can be easily
verified in Table 4, where we observe that Caser & GRURec without
subsession perform extremely worse with long sessions. In addi-
tion, even with sub-session Caser & GRURec still show significantly
worse results than NextItNet because the separate optimization of
each sub-session is clearly suboptimal compared with leveraging
full sessions by NextItNet. Second, unlike Caser, NextItNet has no
pooling layers, although it is also a CNN based model. As a result,
NextItNet preserves the whole spatial resolution of the original
embedding matrix E without any information lost. The third advan-
tage is that NextItNet can support deeper layers by using residual
learning, which better suits for modeling complicated relations
and long-range dependencies. We have separately validated the

Table 7: Overall training time (mins).

Model GRURec Caser NextItNet

MUSIC_L5 66 59 54
MUSIC_L20 282 191 76
MUSIC_L100 586 288 150

performance of residual block in Fig. 3 (b) and showed the results
in Table 5. It can be observed that the performance of NextItNet
can be significantly improved by the residual block design. Table 6
shows the impact of embedding sizes.

In addition to the advantage of recommendation accuracy, we
have also evaluated the efficiency of NextItNet in Table 7. First, it
can be seen thatNextItNet and Caser requires less training time than
GRURec in all three data sets. The reason that CNN-based models
can be trained much faster is due to the full parallel mechanism of
convolutions. Clearly, the training speed advantage of CNN models
are more preferred by modern parallel computing systems. Second,
it shows that NextItNet achieves further improvements in training
time compared with Caser. The faster training speed is mainly
because NextItNet leverages the complete sequential information
during training and then converges much faster by less training
epochs. To better understand of the convergence behaviours, we
have shown them in Fig. 5. As can be seen, our model with the
same number of training sessions converges faster (a) and better
(b, c, d) than Caser and GRURec. This confirms our claim in Section
3.1 since Caser and GRURec cannot make full use of the internal
sequential information in the session.

5 CONCLUSION
In this paper, we presented a simple, efficient and highly effective
convolutional generative model for session-based top-N item rec-
ommendations. The proposed model combines masked filters with
1D dilated convolutions to increase the receptive fields, which is
very important to model the long-range dependencies. In addition,
we have applied residual learning to enable training of much deeper
networks. We have shown that our model can greatly outperform
state-of-the-arts in real-world session-based recommendation tasks.

The proposed model can serve as a generic method for modeling
both short- and long-range session-based recommendation data.

For comparison purposes, we have not considered additional
contexts in either our model or baselines. However, our model is
flexible to incorporate various context information. For example,
if we know the user identity u and location p, the distribution in
Eq. (1) can be modified as follows to incorporate these information.

p (x) =
t∏
i=1

p (xi |x0:i−1,u,P ,θ)p (x0) (6)

where we can combine E (before convolution) or Eo (after con-
volution) with the user embedding vector u and location matrix
P by element-wise operations, such as multiplication, addition or
concatenation. We leave the evaluation for future work.

ACKNOWLEDGMENTS
This paperwas supported by the EuropeanUnion’s Horizon 2020 Re-
search and Innovation program under grant agreement No 780787.

REFERENCES
[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer

normalization. arXiv preprint arXiv:1607.06450 (2016).
[2] Guy Blanc and Steffen Rendle. 2017. Adaptive Sampled Softmax with

Kernel Based Sampling. arXiv preprint arXiv:1712.00527 (2017).
[3] Sotirios P. Chatzis, Panayiotis Christodoulou, and Andreas S. Andreou.

2017. Recurrent Latent Variable Networks for Session-Based Recom-
mendation. In Proceedings of the 2nd Workshop on Deep Learning for
Recommender Systems (DLRS 2017). ACM, 38–45.

[4] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Mur-
phy, and Alan L Yuille. 2016. Deeplab: Semantic image segmentation
with deep convolutional nets, atrous convolution, and fully connected
crfs. arXiv preprint arXiv:1606.00915 (2016).

[5] Chen Cheng, Haiqin Yang, Michael R Lyu, and Irwin King. 2013. Where
You Like to Go Next: Successive Point-of-Interest Recommendation..
In IJCAI.

[6] Zhiyong Cheng, Jialie Shen, Lei Zhu, Mohan Kankanhalli, and Liqiang
Nie. 2017. Exploiting Music Play Sequence for Music Recommendation.
In IJCAI.

[7] Qiang Cui, Shu Wu, Yan Huang, and Liang Wang. 2017. A Hierarchical
Contextual Attention-based GRU Network for Sequential Recommen-
dation. arXiv preprint arXiv:1711.05114 (2017).

[8] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N
Dauphin. 2017. Convolutional Sequence to Sequence Learning. arXiv
preprint arXiv:1705.03122 (2017).

[9] Youyang Gu, Tao Lei, Regina Barzilay, and Tommi S Jaakkola. 2016.
Learning to refine text based recommendations.. In EMNLP. 2103–2108.

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep
residual learning for image recognition. In CVPR. 770–778.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Iden-
tity mappings in deep residual networks. In ECCV. Springer, 630–645.

[12] Xiangnan He and Tat-Seng Chua. 2017. Neural factorization machines
for sparse predictive analytics. In SIGIR. ACM, 355–364.

[13] Xiangnan He, Zhankui He, Xiaoyu Du, and Tat-Seng Chua. 2018. Ad-
versarial personalized ranking for recommendation. In SIGIR. ACM,
355–364.

[14] Balázs Hidasi and Alexandros Karatzoglou. 2017. Recurrent Neural Net-
works with Top-k Gains for Session-based Recommendations. arXiv
preprint arXiv:1706.03847 (2017).

[15] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and
Domonkos Tikk. 2015. Session-based recommendations with recurrent
neural networks. arXiv preprint arXiv:1511.06939 (2015).

[16] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accel-
erating deep network training by reducing internal covariate shift. In
ICML. 448–456.

[17] Sébastien Jean, Kyunghyun Cho, Roland Memisevic, and Yoshua Ben-
gio. 2014. On using very large target vocabulary for neural machine
translation. arXiv preprint arXiv:1412.2007 (2014).

[18] Nal Kalchbrenner, Lasse Espeholt, Karen Simonyan, Aaron van den
Oord, Alex Graves, and Koray Kavukcuoglu. 2016. Neural machine
translation in linear time. arXiv preprint arXiv:1610.10099 (2016).

[19] Hugo Larochelle and Iain Murray. 2011. The neural autoregressive
distribution estimator. In AISTATS. 29–37.

[20] Jing Li, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Tao Lian, and Jun
Ma. 2017. Neural Attentive Session-based Recommendation. In CIKM.
ACM, 1419–1428.

[21] Vinod Nair and Geoffrey E Hinton. 2010. Rectified linear units improve
restricted boltzmann machines. In ICML. 807–814.

[22] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan,
Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and
Koray Kavukcuoglu. 2016. Wavenet: A generative model for raw audio.
arXiv preprint arXiv:1609.03499 (2016).

[23] Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu.
2016. Pixel recurrent neural networks. arXiv preprint arXiv:1601.06759
(2016).

[24] Aäron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse Espe-
holt, Alex Graves, and Koray Kavukcuoglu. 2016. Conditional image
generation with pixelcnn decoders. In NIPS. Curran Associates Inc.,
4797–4805.

[25] Massimo Quadrana, Alexandros Karatzoglou, Balázs Hidasi, and
Paolo Cremonesi. 2017. Personalizing Session-based Recommenda-
tions with Hierarchical Recurrent Neural Networks. arXiv preprint
arXiv:1706.04148 (2017).

[26] Tom Sercu and Vaibhava Goel. 2016. Dense Prediction on Sequences
with Time-Dilated Convolutions for Speech Recognition. arXiv
preprint arXiv:1611.09288 (2016).

[27] Elena Smirnova and Flavian Vasile. 2017. Contextual Sequence Mod-
eling for Recommendation with Recurrent Neural Networks. arXiv
preprint arXiv:1706.07684 (2017).

[28] Yong Kiam Tan, Xinxing Xu, and Yong Liu. 2016. Improved recurrent
neural networks for session-based recommendations. In Proceedings
of the 1st Workshop on Deep Learning for Recommender Systems. ACM,
17–22.

[29] Jiaxi Tang and Ke Wang. 2018. Personalized Top-N Sequential Recom-
mendation via Convolutional Sequence Embedding. In ACM Interna-
tional Conference on Web Search and Data Mining.

[30] Trinh Xuan Tuan and Tu Minh Phuong. 2017. 3D Convolutional
Networks for Session-based Recommendation with Content Features.
In RecSys. ACM.

[31] Fisher Yu and Vladlen Koltun. 2015. Multi-scale context aggregation
by dilated convolutions. arXiv preprint arXiv:1511.07122 (2015).

[32] Fajie Yuan, Guibing Guo, Joemon M Jose, Long Chen, Haitao Yu, and
Weinan Zhang. 2016. Lambdafm: learning optimal ranking with factor-
ization machines using lambda surrogates. In CIKM. ACM, 227–236.

[33] Fajie Yuan, Guibing Guo, Joemon M Jose, Long Chen, Haitao Yu, and
Weinan Zhang. 2017. Boostfm: Boosted factorization machines for
top-n feature-based recommendation. In IUI. ACM, 45–54.

[34] Fajie Yuan, Xin Xin, Xiangnan He, Guibing Guo, Weinan Zhang, Tat-
Seng Chua, and Joemon Jose. 2018. fBGD: Learning Embeddings From
Positive Unlabeled Data with BGD. UAI .

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Top-N Session-based Recommendation
	2.2 Limitations of Caser
	2.3 Related Work

	3 Model Design
	3.1 A Simple Generative Model
	3.2 Network Architecture
	3.3 Masked Convolutional Residual Network
	3.4 Final Layer, Network Training and Generating

	4 Experiments
	4.1 Datasets and Experiment Setup
	4.2 Results Summary

	5 Conclusion
	Acknowledgments
	References

