
Learning Implicit Recommenders
from Massive Unobserved Feedback

Fajie Yuan

School of Computing Science

College of Science and Engineering
University of Glasgow

This dissertation is submitted for the degree of
Doctor of Philosophy (PhD)

14th Sep 2018

© 2018 FAJIE YUAN

http://www.dcs.gla.ac.uk
http://www.dcs.gla.ac.uk
http://www.gla.ac.uk

Declaration

I hereby declare that except where specific reference is made to the work of others,
the contents of this dissertation are original and have not been submitted in whole
or in part for consideration for any other degree or qualification in this, or any
other University.

This dissertation is the result of my own work, under the supervision of Pro-
fessor Joemon M. Jose and Dr. Simon Rogers.

Fajie Yuan
Sep, 2018

i

Acknowledgements

First of all, I would like to express my sincere gratitude to my doctoral supervisor
Prof. Joemon M. Jose. Without your careful instruction, I would never achieve
so much success and finish the degree. Joemon is not only a nice and easy-going
professor, but also one of the best friends in my life. Thanks for your support
and encouragement. Thanks for believing in me and teaching me. With your
supervision, I really enjoy my research and my Ph.D life.

Second, I would like to show my great respect to my second supervisor Dr.
Simon Rogers. Thanks for agreeing to be my second supervisor. Simon is a cool
guy and a helpful friend. Thanks for giving me so much good advice in my annual
review.

Third, I want to thank Dr. Guibing Guo, Dr. Weinan Zhang and Dr. Xiang-
nan He, who I have worked with for many years. They are the most outstanding
young researchers in my field. I have learned a lot from him during collaboration
and got many help from them. Without their help, I will not have so many good
work accepted by prestigious conferences.

Fourth, I would like to thank my internship advisor Dr. Alexandros Karat-
zoglou and Ioannis Arapakis in Telefonica Research. Alexandros and Ioannis are
great researchers in industry and gave me so much invaluable advice in guiding
me towards doing useful and successful research.

Fifth, I would like to thank my two examiners Prof. Pablo Castells and Dr.
Ke Yuan for their expert advice to further improve my thesis.

Sixth, I would like to thank my university colleagues: Stewart, Rami, Philip,
James, Jesus, Fatma, Jarana, David Maxwell, Jorge Paule, Stuart Mackie, Yashar
Moshfeghi, Nujud and Xin Xin. Particularly, thanks Stewart for many help on
my research.

Seventh, I would like to thank my best Chinese friends in Glasgow: Ya-

ii

meng, Yaqi, Zhilong, Pengcheng, Xinxin, Yingcheng, Yuting, Xiaocai, Haitao
and Yushu. Thanks guys for giving me so much happiness!

Last but not least, I would like to acknowledge the most important people in
my life — my parents and my wife. I want to give my best thanks to them for
their love and unconditional supports during these years!

iii

Abstract

Recommender systems have become an attractive research topic during the last
two decades, and are utilized in a broad range of areas, including movies, music,
images, advertisements, natural language, search engines, and social websites,
etc. Early recommendation research largely focused on explicit feedback such as
user ratings. However, in practice most observed user feedback is not explicit
but implicit, such as clicks, purchases and dwell time, where users’ explicit pref-
erence on items is not provided. Moreover, implicit feedback is usually tracked
automatically and, thus, it is more prevalent, inexpensive and scalable.

In this thesis we investigate implicit feedback techniques for real-world recom-
mender systems. However, learning a recommender system from implicit feedback
is very challenging, primarily due to the lack of negative feedback. While a com-
mon strategy is to treat the unobserved feedback (i.e., missing data) as a source
of negative signal, the technical difficulties cannot be overlooked: (1) the ratio of
positive to negative feedback in practice is highly imbalanced, and (2) learning
through all unobserved feedback (which easily scales to billion level or higher) is
computationally expensive.

To effectively and efficiently learn recommender models from implicit feed-
back, two types of methods are presented, that is, negative sampling based
stochastic gradient descent (NS-SGD) and whole sample based batch gradient
descent (WS-BGD). Regarding the NS-SGD method, how to effectively sample
informative negative examples to improve recommendation algorithms is inves-
tigated. More specifically, three learning models called Lambda Factorization
Machines (lambdaFM), Boosting Factorization Machines (BoostFM) and Geo-
graphical Bayesian Personalized Ranking (GeoBPR) are described. While regard-
ing the WS-BGD method, how to efficiently use all unobserved implicit feedback
data rather than resorting to negative sampling is studied. A fast BGD learning

iv

algorithm is proposed, which can be applied to both basic collaborative filtering
and content/context-aware recommendation settings.

The last research work is on the session-based item recommendation, which
is also an implicit feedback scenario. However, different from above four works
based on shallow embedding models, we apply deep learning based sequence-to-
sequence model to directly generate the probability distribution of next item. The
proposed generative model can be applied to various sequential recommendation
scenarios.

To support the main arguments, extensive experiments are carried out based
on real-world recommendation datasets. The proposed recommendation algo-
rithms have achieved significant improvements in contrast with strong bench-
mark models. Moreover, these models can also serve as generic solutions and
solid baselines for future implicit recommendation problems.

v

Table of Contents

Declaration i

Acknowledgements ii

Abstract iv

Table of Contents vi

List of Figures xii

List of Tables xvi

I Introduction and Background 1

1 Introduction 2
1.1 Background on Recommendation 2
1.2 Implicit Feedback Recommendation 4
1.3 Thesis Statement . 6
1.4 Thesis Structures and Contributions 8
1.5 Related Publications . 9

2 Background of Implicit Recommendation 11
2.1 Overview on Recommender Systems 11

2.1.1 Goals and Formulation of Recommender Systems 11
2.1.2 Types of Recommender Systems 14

2.1.2.1 Collaborative Filtering Based Recommendations . 15
2.1.2.2 Content/Context-Based Recommendations 16

2.2 Overview on Implicit Recommendation 18
2.3 Implicit Feedback Model Overview 22

2.3.1 Factorization Models . 22
2.3.1.1 Basic Matrix Factorization (Koren et al., 2009) . 23

vi

TABLE OF CONTENTS

2.3.1.2 SVD++ (Koren and Bell, 2015) 24
2.3.1.3 SVDFeature (Chen et al., 2012) 24
2.3.1.4 Factorization Machines (Rendle, 2010) 25
2.3.1.5 Tucker Decomposition (Tucker, 1966) 26

2.3.2 Deep Learning Models . 27
2.3.2.1 Neural Collaborative Filtering (He et al., 2017) . 27
2.3.2.2 Neural Factorization Machines (He and Chua, 2017) 28

2.3.3 Objective Functions with Negative Sampling 29
2.3.3.1 Pointwise Loss with Negative Sampling 30
2.3.3.2 Pairwise Loss with Negative Sampling 31

2.4 Evaluation of Implicit Recommendation 32
2.4.1 Implicit Feedback Datasets 32
2.4.2 Evaluation Protocols . 33
2.4.3 Evaluation Metrics . 34

II SGD with Negative Sampling 37

3 Lambda Factorization Machines 38
3.1 Introduction . 39
3.2 Related Work . 40

3.2.1 Content/Context-based Recommender Systems 40
3.2.2 Learning-to-Rank . 41

3.3 Preliminaries . 43
3.3.1 Pairwise Ranking Factorization Machines 43
3.3.2 Lambda Motivation . 44

3.4 Lambda Strategies . 47
3.4.1 Static and Context-independent Sampler 48
3.4.2 Dynamic and Context-aware Sampler 50
3.4.3 Rank-aware Weighted Approximation 51

3.5 Lambda with Alternative Losses 55
3.6 Experiments . 56

3.6.1 Experimental Setup . 56
3.6.1.1 Datasets . 56

vii

TABLE OF CONTENTS

3.6.1.2 Evaluation Metrics 57
3.6.1.3 Baseline Methods 58
3.6.1.4 Hyper-parameter Settings 58

3.6.2 Performance Evaluation 59
3.6.2.1 Accuracy Summary 59
3.6.2.2 Effect of Lambda Surrogates/Samplers 61
3.6.2.3 Effect of Adding Features 62
3.6.2.4 Lambda with Alternative Loss Functions 63

3.7 Chapter Summary . 64

4 Boosting Factorization Machines 66
4.1 Introduction . 66
4.2 Related Work about Boosting . 68
4.3 Preliminaries . 69
4.4 Boosted Factorization Machines 70

4.4.1 BoostFM . 70
4.4.2 Component Recommender 73

4.4.2.1 Weighted Pairwise Factorization Machines 73
4.4.2.2 Weighted LambdaFM Factorization Machines . . 74

4.5 Experiments . 75
4.5.1 Experimental Setup . 75

4.5.1.1 Datasets . 75
4.5.1.2 Evaluation Metrics 76
4.5.1.3 Baseline Methods 76
4.5.1.4 Hyper-parameter Settings 77

4.5.2 Performance Evaluation 78
4.5.2.1 Accuracy Summary 78
4.5.2.2 Effect of Number of Component Recommenders . 78
4.5.2.3 Effect of Sampling Strategies (i.e., ρ) 81
4.5.2.4 Effect of Adding Features 82

4.6 Chapter Summary . 83

5 Geographical Bayesian Personalized Ranking 84
5.1 Introduction . 85

viii

TABLE OF CONTENTS

5.2 Related Work for POI recommendation 86
5.3 Geo-spatial Preference Analysis 88

5.3.1 Data Description . 88
5.3.2 Motivation . 89
5.3.3 Proximity Analysis . 90

5.4 Preliminaries . 91
5.4.1 Problem Statement . 91
5.4.2 BPR: Ranking with Implicit Feedback 92

5.5 The GeoBPR Model . 93
5.5.1 Model Assumption . 93
5.5.2 Model Derivation . 95
5.5.3 Model Learning and Sampling 98

5.6 Experiments . 99
5.6.1 Experimental Setup . 99

5.6.1.1 Baseline Methods 99
5.6.1.2 Parameter Settings 100
5.6.1.3 Evaluation Metrics 101

5.6.2 Experimental Results . 101
5.6.2.1 Summary of Experimental Results 101
5.6.2.2 Impact of Neighborhood 103
5.6.2.3 Impact of Factorization Dimensions 104

5.7 Chapter Summary . 104

III Batch Gradient with All Samples 106

6 Fast Batch Gradient Descent 107
6.1 Introduction . 108
6.2 Related Work . 109
6.3 Preliminaries . 111

6.3.1 The Generic Embedding Model 111
6.3.2 Optimization with BGD 112
6.3.3 Efficiency Challenge . 113

6.4 fBGD . 113

ix

TABLE OF CONTENTS

6.4.1 Partition of the BGD Loss 114
6.4.2 Constructing a Dot Product Structure 115
6.4.3 Efficient Gradient . 116
6.4.4 Effective Weighting on Missing Data 118

6.5 Improved fBGD . 120
6.5.1 Gradient Instability Issue in CF Settings 120
6.5.2 Solving the Unstable Gradient Problem 122

6.6 Experiments . 123
6.6.1 Experimental Settings . 123

6.6.1.1 Datasets . 123
6.6.1.2 Baselines and Evaluation Protocols 124
6.6.1.3 Experimental Reproducibility 125

6.6.2 Performance Evaluation 126
6.6.2.1 Model Comparison 126
6.6.2.2 Impact of fBGD Weighting 129
6.6.2.3 Impact of Adding Features 131
6.6.2.4 Efficiency . 132

6.7 Chapter Summary . 132

IV Deep Learning for Session-based Recommendation 134

7 Deep Learning for Session-based recommendation 135
7.1 Introduction . 136
7.2 Preliminaries . 138

7.2.1 Top-N Sequential Recommendation 138
7.2.2 Limitations of Caser . 139
7.2.3 Related Work . 141

7.3 Model Design . 142
7.3.1 Sequential Generative Modeling 142
7.3.2 Network Architecture . 144

7.3.2.1 Embedding Look-up 144
7.3.2.2 Dilation . 144
7.3.2.3 One-dimensional Transformation 145

x

TABLE OF CONTENTS

7.3.3 Residual Learning . 145
7.3.3.1 Masking . 148

7.3.4 Final Layer, Network Training and Generating 148
7.4 Experiments . 150

7.4.1 Datasets and Experiment Setup 150
7.4.1.1 Datasets and Preprocessing 150
7.4.1.2 Hyper-parameter Settings 152
7.4.1.3 Evaluation Protocols 153

7.4.2 Results Summary . 153
7.5 Chapter Summary . 156

V Conclusion 157
8 Conclusions and Future Work 158

8.1 Contribution Summary . 158
8.2 Future Work . 161
8.3 Closing Remarks . 163

References 164

xi

List of Figures

1.1 Sparse matrices of implicit (a) and explicit (b) data. u and i de-
notes user and item, respectively. “+” and “?” denote positive
(e.g., a click) and unobserved feedback (i.e., no click), respectively.
The numerical values in (b) represent explicit rating scores that
users assigned to items, while on (a), users’ explicit feedback (i.e.,
ratings) is not observed. 5

3.1 A set of items ordered under a given context (e.g., a user) using a
binary relevance measure. The blue bars represent relevant items
for the context, while the light gray bars are those not relevant.
(a) is the ideal ranking; (b) is a ranking with eight pairwise errors;
(c) and (d) are a ranking with seven pairwise errors by moving the
top items of (b) down two rank levels, and the bottom preferred
items up three. The two arrows (black solid and red dashed) of (c)
denote two ways to minimize the pairwise errors. (d) shows the
change in NDCG by swapping the orders of two items (e.g., item
7 and item 1). 46

3.2 Item popularity on the Lastfm (short for Last.fm) and Yahoo
datasets plotted in the linear scale. 48

3.3 Performance comparison w.r.t. top-N values, i.e., Pre@N (P) and
Rec@N (R). 60

3.4 Parameter tuning w.r.t. MRR. 60
3.5 The variants of PRFM and LambdaFM based on various pairwise

loss functions. 63
3.6 Performance comparison w.r.t. MRR with different item features. 63

xii

LIST OF FIGURES

4.1 Performance comparison w.r.t., top-N values, i.e., Pre@N and Rec@N.
N ranges from 2 to 20, the number of component recommender T
is fixed to 10, and ρ for B.WLFM is fixed to 0.3. 79

4.2 Performance trend of BoostFM (i.e., B.WPFM and B.WLFM)
w.r.t. Pre@10 and Rec@10. T ranges from 1 to 50, and ρ is fixed
to 0.3. 80

4.3 Performance trend of BoostFM by tuning ρ w.r.t. Pre@10 &
Rec@10. ρ ∈ {0.1, 0.3, 0.5, 0.8, 1.0}, T = 10. 81

4.4 Performance comparison w.r.t. Pre@10 & Rec@10 with context
and side information. In (a) (d), (i, t) denotes an item-tag (i.e.,
movie-tag) pair and (u, i, t) denotes a user-item-tag triple; in (b)(c)(e)(f)
(u, i) denotes a user-item (i.e., user-music) pair and (u, i, a) denotes
a user-item-artist triple; similarly, (u, i, a, a) denotes a user-item-
artist-album quad. T is fixed to 10, and ρ is fixed to 0.3. 82

5.1 The overview of a random user’s multi-center mobility behaviours
on Phoenix and Las Vegas. 89

5.2 Two scenarios of user-POI pairs. 94
5.3 Performance comparison with respect to top-N values in terms of

Pre@N and Rec@N. 102
5.4 Performance comparison with different µ. 102
5.5 Performance comparison with different k. 103

6.1 Impact of negative item sampling on SGD on the Last.fm data
set. The x-axis is the number of sampled negative items for each
positive one. Better accuracy (a) can be obtained by sampling
more negative instances at the expense of longer training times (b).
More details on the experimental settings are given in Section 6.6. 108

6.2 The structure of sparse input matrix and dense embedding matrix
for user-fields. XU (left) denotes the user-field matrix with only
user IDs; XU (right) denotes the user-field matrix with both user
IDs and additional context variables; (VU)T is the transpose of VU .112

xiii

LIST OF FIGURES

6.3 Performance of the improved fBGD (Section 6.5.2) and standard
fBGD on Last.fm with four features. For the standard fBGD, some
gradients will be evaluated as infinite (NaN) when γ > 5 × 10−5.
As can be seen, fBGD with vanishing gradient performs poorly on
Last.fm even by carefully tuning the learning rate. 120

6.4 Impact of weighting parameters α0 and ρ. 130
6.5 Training costs of fBGD vs BGD. One unit in (a) and (b) represents

26 and 165 seconds respectively. 131

7.1 The core structure of Caser. The red, yellow and blue regions
denotes a 2 × k, 3 × k and 4 × k convolution filter respectively,
where k = 5. The purple row stands for the true next item. . . . 137

7.2 The proposed generative architecture with 1D standard CNNs (a)
and efficient dilated CNNs (b). An example of a standard 1D
convolution filter and dilated filters are shown at the bottom of
(a) and (b) respectively. The blue dash line is the identity map
which exists only for residual block (b) in Fig. 7.3. 140

7.3 Dilated residual blocks (a), (b) and one-dimensional transforma-
tion (c). (c) shows the transformation from the 2D filter (C =

1)(left) to the 1D 2-dilated filter (C = 2k) (right); the vertical
black arrows represent the direction of the sliding convolution. In
this work, the default stride for the dilated convolution is 1. Note
the reshape operation in (b) is performed before each convolution
in (a) and (b) (i.e., 1×1 and masked 1×3), which is then followed
by a reshape back step after convolution. 146

7.4 The future item can only be determined by the past ones according
to Eq. (7.1). (a) (d) and (e) show the correct convolution process,
while (b) and (c) are wrong. E.g., in (d), items of {1, 2, 3, 4} are
masked when predicting 1, which can be technically implemented
by padding. 146

xiv

LIST OF FIGURES

7.5 Convergence behaviors of MUSIC_L100. GRU is short for GRURec.
g = 256k means the number of training sequences (or sessions) of
one unit in x-axis is 256k. Note that (1) to speed up the evaluation,
all of the convergence tests are performed on the first 1024 sessions
in the testing set, which also applies to Fig. 7.6; (2) clearly, GRU
and Caser have not converged in above figures. 153

7.6 Convergence behaviors of MUSIC_L20. 155

xv

List of Tables

3.1 Basic statistics of datasets. Each entry indicates a context-item pair 57
3.2 Performance comparison on NDCG, MRR and AUC. For each mea-

sure, the best result is indicated in bold. 57

4.1 Basic statistics of datasets. Each tuple represents an observed
context-item interaction. Note that tags on the MLHt dataset are
regarded as recommended items (i.e., i in xi), while a user-item
(i.e., user-movie) pair is regarded as context (i.e., c in xc). 75

5.1 Basic statistics of Datasets. 88
5.2 Ratios of P ′/P . 90
5.3 List of notations. 93
5.4 Performance comparison. PX and LV denotes Phoenix and Las

Vegas respectively. GBPRa and GBPRb denote GeoBPR with
assumption a and b respectively. 100

6.1 Basic statistics of the datasets. The density on Yahoo and Last.fm
is 0.28% and 0.033% respectively. 126

6.2 Comparison of implicit embedding models. 126
6.3 Accuracy evaluation on Yahoo. f−BGD denotes fBGD with a uniform

weight (ρ = 0). The training iterations of f−BGD is 400. For each
measure, the best results for SGD and all models are indicated in
bold, which also applies to Table 6.4. 127

6.4 Accuracy evaluation on Last.fm. 128

xvi

LIST OF TABLES

6.5 Accuracy evaluation on Last.fm by adding features. u, p, i and a
denote user, last item (song), next item and artist respectively.
Note u & p belong to the user-field, and i & a belong to the item-
field. All hyper-parameters of fBGD are fixed. 129

7.1 Session statistics of all data sets. MUSIC_M5 denotes MUSIC_M
with maximum session size of 5. The same applies to MUSIC_L.
‘M’ denotes 1 million. 148

7.2 Accuracy comparison. The upper, middle and below tables are
MRR@5, HR@5 and NDCG@5 respectively. 149

7.3 Accuracy comparison. The upper, middle and below tables are
MRR@20, HR@20 and NDCG@20 respectively. 151

7.4 Effects of sub-session in terms of MRR@5. The upper, middle and
below tables represent GRU, Caser and NextItNet respectively.
“10”, “20”, “50” and “100” the session length. All high parameters
are fixed. 152

7.5 Effects (MRR@5) of increasing embedding size. The upper and
below tables are MUSIC_M5 and MUSIC_L100 respectively. . . 152

7.6 Effects of the residual block in terms of MRR@5. “Without” means
no skip connection. “M5”, “L5”, “L10” and “L50” denote MUSIC_-
M5 , MUSIC_L5 , MUSIC_L10 and MUSIC_L50 respectively.
All high parameters are fixed. 154

7.7 Overall training time (mins). 155

xvii

Part I
Introduction and Background

The thesis focuses on the item recommendation task from
implicit feedback. The main research question is how to ef-
fectively use the large-scale unobserved feedback. This part
includes Chapter 1 for introduction and Chapter 2 for im-
plicit feedback model reviews. In Chapter 1, we have surveyed
the background information for implicit feedback based item
recommendation, and then provided thesis motivations, state-
ments, challenges and contributions. In Chapter 2, we investi-
gated the most widely used prediction models, objective func-
tions and evaluation metrics for item recommendation from
implicit feedback.

1

Chapter 1

Introduction

1.1 Background on Recommendation

In the last two decades, the emerging growth of the Internet has brought a huge
amount of digital information, including but not limited to, texts, images, au-
dios/videos and electronic products. Meanwhile, a variety of social networks
(e.g., Facebook1 and Weichat2), electronic business platforms (e.g., Amazon3),
and multimedia sharing websites (e.g., Youtube4) have become more and more
popular. The volume of online information is growing at an unbelievably fast rate,
since a large number of visitors in these application platforms can frequently cre-
ate, upload and share new information (Shi, 2013). With such huge amount of
information, it is difficult for users to find useful items and make effective deci-
sions, which is referred to as information overload5. To deal with this issue, two
important information processing technologies have been developed (Belkin and
Croft, 1992): information retrieval and recommendation.

In an information retrieval (IR) system, users explicitly present their infor-
mation needs by sending a query to a search engine (e.g., Google6) (Costa and
Roda, 2011; Belkin and Croft, 1992). The system processes the request by search-
ing existing resources and returns a list of matched items according to a certain
retrieval algorithm. On the contrary, in a recommendation platform, the sys-
tem (e.g., Amazon) typically automatically generates recommendations based on

1https://www.facebook.com/
2https://web.wechat.com/
3https://www.amazon.co.uk//
4https://www.youtube.com
5https://en.wikipedia.org/wiki/Information_overload
6https://www.google.co.uk/

2

https://www.facebook.com/
https://web.wechat.com/
https://www.amazon.co.uk//
https://www.youtube.com
https://en.wikipedia.org/wiki/Information_overload
https://www.google.co.uk/

1.1 Background on Recommendation

users’ profiles rather than an explicit query. Both ways play an important role in
obtaining knowledge from the Internet. The main difference lies in that the needs
of a user in an IR system are expressed explicitly, whereas they are typically un-
specified in a recommender system (RS), and as a result, the user is more likely to
passively accept recommended information (Shi, 2013). In addition, compared to
search engines, recommender systems help users discover new unexpected items,
or support serendipitous (Kawamae, 2010) discoveries, which they may not ini-
tially realize when formulating the query (Tintarev et al., 2013; Shi, 2013). A
good IR system typically needs to have accuracy guarantee in matched items,
which, however, is not enough for a RS system. Recommendation accuracy, per-
sonalization, and context are all important factors for evaluating a RS system.
In this thesis, our main research focus is to study and develop new advancement
in recommender systems, and address critical research challenges in this domain.

A recommender system is formally defined as “a subclass of information fil-
tering system that seeks to predict the ‘rating’ or ‘preference’ a user would give to
an item” (Ricci et al., 2011). Recommender systems are important in assisting
users with their choices. A good recommender system is supposed to suggest the
right items to the right person in the right context. In recent years recommender
systems have been widely used in a variety of domains (Sheth et al., 2010), such as
recommending movies we might like (Katarya and Verma, 2017), places we might
visit (Yuan et al., 2016d), things we might buy (Yuan et al., 2018a), friends we
may know (Yuan et al., 2016a) and queries we may type (Baeza-Yates et al.,
2004).

There are two types of recommender systems according to the way to gen-
erate recommendations: collaborative filtering (Koren and Bell, 2015) and con-
tent/context based recommendation (Rendle, 2012). Collaborative filtering (aka
neighborhood-based) approaches build the recommendation model based on users’
past histories, or decisions made by other similar users (i.e., neighbors). These ap-
proaches are typically based on a very simple recommendation algorithm, which
does not rely on the features or contents of users and items. For example, the
recommender system in Amazon can generate a list of products by leveraging
only the collective buying or rating behaviors of various users. The well-known
recommendation principle of collaborative filtering is that similar users tend to be

3

1.2 Implicit Feedback Recommendation

interested in similar items (Aggarwa, 2016). However, in practice, recommender
systems can be more complex and have to consider more auxiliary characteristics
for users and products. This leads to the content/context based recommendation
approaches, which leverage additional attributes such as the ratings of users or
descriptions of items. For example, the Pandora1 recommender system suggests
music by leveraging the properties of a song or artist (around 400 attributes2),
and play music that has similar properties to the user. The basic idea is that
users’ preference can be modeled through attributes of the items that they liked in
the past. We (Yuan et al., 2016b,d, 2017, 2018b) have proven that leveraging ad-
ditional content (or context) information of users and items can largely improve
the performance of recommender systems. Therefore, in this thesis we study
recommender systems by considering both collaborative and content/context in-
formation.

1.2 Implicit Feedback Recommendation

Recommender systems can also be classified by the type of input data. There is
one line of research that focuses on explicit feedback, the data of which explicitly
indicates the degree of a user’s preference on an item. The most common explicit
feedback data is users’ ratings, such as a 1-to-5 score or a thumbs-up/down mark.
The recommendation task that is based on explicit feedback data is often referred
to as the rating prediction problem, where items with higher rating scores are
recommended to the user by priority. However, users in practice do not always
deliberately choose to rate items. Hence, explicit feedback is not always available
(Rendle et al., 2009b; Rendle and Freudenthaler, 2014).

By contrast, implicit feedback is much easier to collect since it can be tracked
automatically. Examples of implicit feedback include users’ clicks on webpages,
purchases of products, dwell time, and video views, where users’ explicit prefer-
ence on items is not provided. Clearly, implicit feedback data is more prevalent,
inexpensive and scalable than explicit rating data. For example, even though
there is no rating data provided, Netflix3 at least knows whether the user has

1https://uk.pandora.net/en
2https://en.wikipedia.org/wiki/Recommender_system
3https://www.netflix.com/gb/

4

https://uk.pandora.net/en
https://en.wikipedia.org/wiki/Recommender_system
https://www.netflix.com/gb/

1.2 Implicit Feedback Recommendation

+ ? + ?

+ ? ? ?

+ ? ? +

? ? + ?
u

se
r

item

u1

u2

u3

u4

i1 i2 i3 i4

(a) Implicit matrix

5 ? 2 2

? 4 ? 1

4 3 3 2

4 ? 2 ?

u
se

r

item

u1

u2

u3

u4

i1 i2 i3 i4

(b) Explicit matrix

Figure 1.1: Sparse matrices of implicit (a) and explicit (b) data. u and i
denotes user and item, respectively. “+” and “?” denote positive (e.g., a click)
and unobserved feedback (i.e., no click), respectively. The numerical values in (b)
represent explicit rating scores that users assigned to items, while on (a), users’
explicit feedback (i.e., ratings) is not observed.

watched the movie or not with observed feedback. Recommendation based on
implicit feedback is usually formulated as the item recommendation task, which
is essentially a ranking task (Rendle et al., 2009b; Yuan et al., 2016b). Moreover,
compared with the rating prediction task, implicit feedback based item recom-
mendation task is more close to real-world recommendation scenarios since an
observed positive feedback can be reasonably presumed as the user’s interests on
the item, whereas the difference of ratings does not directly indicate whether the
user wants to buy or click the item. One reason is probably because most ratings
are provided after the fact that the user has already checked out the item, while
the recommendation process is often finished before the user’s check-out behav-
ior. Figure 1.1 shows the difference between implicit and explicit feedback input
data.

The main focus of this thesis is on item recommendations from implicit feed-
back. Based on the above discussion, several characters for implicit feedback
data can be identified: (1) only positive user feedback (e.g., an observed click
or purchase) is available, while negative and unknown (or missing) feedback are

5

1.3 Thesis Statement

mixed together (see Figure 1.1(a)); (2) the ratio of positive to unobserved nega-
tive feedback is highly unbalanced. Most users only interact with a small portion
of items, which results in a very sparse user-item matrix (the sparsity in many
real-world recommender systems is higher than 95% (Grčar et al., 2005)); (3)
the amount of unobserved feedback has an extremely large scale. For example,
assuming that there is a recommender system consisting of 1 million users and
items, the total implicit feedback contains 1 trillion user-item pairs. According
to (2), most (i.e., 95%) of the 1 trillion implicit feedback is unobserved. Thus,
learning from implicit feedback is very challenging, and differs from standard
machine learning tasks with both positive and negative data. Specifically, the
main challenges that we focus on in this thesis lie in the following aspects for the
implicit recommendation problem:

• How to learn recommender models from one-class (i.e., positive-only) data?

• How to distinguish negative examples from unobserved feedback?

• How to learn recommender models from highly imbalanced data?

• How to efficiently learn recommender models from large-scale unobserved
data?

The thesis targets at above-mentioned four challenges and propose a series of
solutions to address them.

1.3 Thesis Statement

The statement of this thesis is that unobserved examples (i.e., user-item pairs)
from implicit feedback data have an important impact on the performance of rec-
ommender systems. First, understanding what kinds of unobserved examples are
more informative will help build more effective recommendation algorithms. Sec-
ond, the way how to leverage unobserved examples (sampling vs. non-sampling)
directly influences the performance of a recommendation algorithm. In other
words, the convergence, training time and prediction accuracy of a recommen-
dation model are largely determined by the sampling distribution and size of

6

1.3 Thesis Statement

unobserved samples. The final important statement is that leveraging all unob-
served examples without sampling shows state-of-the-art recommendation accu-
racy, and empirically outperforms many sampling based recommendation algo-
rithms. Overall, the statements set forth by the thesis are as follows:

• Statement (1): Unobserved items that are ranked higher (by recommen-
dation algorithms) in the recommendation list are more informative than
those lower ranked items. According to this, we may infer that unobserved
items with higher popularity are more informative than those with lower
popularity. The reason is that items with higher popularity are more likely
to be ranked at the top position in the ranking list as they have more
chances to be positive items and positive items are supposed to be ranked
higher.

• Statement (2): According to (1), sampling unobserved items with higher
popularity or ranks will largely improve the recommendation accuracy on
various top-N ranking measures.

• Statement (3): Sampling more than one unobserved item for each positive
item helps improve the recommendation accuracy in various recommenda-
tion measures. However, it will also increase the computational complexity
as more unobserved items need more stochastic gradient descent (SGD)
updates.

• Statement (4): Although sampling methods are widely used in the im-
plicit feedback setting, they are suboptimal as it cannot converge to the
same loss as all unobserved items in the list. Training with all unobserved
examples empirically shows better performance than sampling based meth-
ods; moreover, using all unobserved examples may not largely increase the
computational complexity with an appropriate optimization approach.

Besides the above four statements, we have also exploited the most advanced
techniques which apply deep learning models for session-based top-N recommen-
dations. Although it also falls into the implicit feedback scenario, the way to
generate recommendation is completely different from above works. Specifically,
the proposed deep learning model directly estimates the probability distribution
for next item(s) instead of computing and ranking the preference scores.

7

1.4 Thesis Structures and Contributions

1.4 Thesis Structures and Contributions

This thesis makes a set of contributions regarding performance improvements of
recommender systems from implicit feedback. This section mainly discusses the
remainder chapters of the thesis along with core ideas and summarized contribu-
tions. The thesis is divide into five parts:

• Part I Introduction: This part comprises Chapters 1 and 2. It provides
the background and related work described in the thesis.

• Part II Stochastic Gradient Descent with Negative Item Sam-
pling: This part comprises Chapter 3, 4 and 5. To handle the large-
scale unobserved feedback, all algorithms in this part are based on neg-
ative sampling techniques with SGD optimization. As for how to effec-
tively distinguish true negatives from unobserved feedback, we introduce
LambdaFM (Yuan et al., 2016b) in Chapter 3, BoostFM (Yuan et al., 2017)
in Chapter 4, and GeoBPR (Yuan et al., 2016d) in Chapter 5. Detailed mo-
tivation and extensive experiments are provided.

• Part III Batch Gradient Descent without Sampling: This part com-
prises Chapter 6. The technical contribution is to show how to efficiently
leverage all unobserved examples without resorting to negative sampling
methods. Specifically, we propose a generic batch gradient descent method
(Yuan et al., 2018b; Xin et al., 2018) that takes advantage of whole training
examples for each parameter optimization. To deal with the highly imbal-
anced data, we propose a simple yet effective weighting scheme for unob-
served training data. Moreover, we have also shown that negative sampling
based methods easily lead to suboptimal results due to the sampling bias.
Empirical evaluations show that batch gradient with all examples signifi-
cantly outperforms negative sampling based SGD models with comparable
training time.

• Part IV Deep Learning for Session-based Recommendation: Con-
sidering the powerful expressiveness of deep learning models, in Chapter 7

8

1.5 Related Publications

we introduce a convolutional sequence model for session-based recommen-
dation from implicit feedback (Yuan et al., 2018a). The proposed method
models conditional distributions of item sequences by the chain rule fac-
torization, and exploits dilated convolutions and residual learning to build
the network architecture. Empirical results show that the proposed model
achieves both faster training and better recommendation quality.

• Part V Conclusion: This part includes only Chapter 8.1 with conclusions.

1.5 Related Publications

The thesis generalizes and builds on the following publications (* denotes equal
contribution):

1. Yuan, Fajie and Guo, Guibing and Jose, Joemon M and Chen, Long and
Yu, Haitao and Zhang, Weinan. Lambdafm: learning optimal ranking with
factorization machines using lambda surrogates. In CIKM 16: Proceedings
of the 25th ACM International on Conference on Information and Knowl-
edge Management, ACM. (Full paper), Part II.

2. Yuan, Fajie and Guo, Guibing and Jose, Joemon M and Chen, Long and
Yu, Haitao and Zhang, Weinan. Optimizing factorization machines for top-
n context-aware recommendations. In WISE 16: International Conference
on Web Information Systems Engineering. (Full paper), Part II.

3. Guo, Guibing* and Shichang, Ouyang* andYuan, Fajie* andWang, Xing-
wei. Approximating Word Ranking and Negative Sampling for Word Em-
bedding. In IJCAI 18: International Joint Conference on Artificial Intelli-
gence. (Full paper), Part II.

4. Yuan, Fajie and Guo, Guibing and Jose, Joemon M and Chen, Long and
Yu, Haitao and Zhang, Weinan. Boostfm: Boosted factorization machines
for top-n feature-based recommendation. In IUI 17: Proceedings of the
22nd International Conference on Intelligent User Interfaces, ACM. (Full
paper), Part II.

9

1.5 Related Publications

5. Yuan, Fajie and Jose, Joemon M and Guo, Guibing and Chen, Long and
Yu, Haitao and Alkhawaldeh, Rami S. Joint Geo-Spatial Preference and
Pairwise Ranking for Point-of-Interest Recommendation. In ICTAI 2016:
Tools with Artificial Intelligence. (Best Student Paper), (Full paper),
Part II.

6. Yuan, Fajie and Xin, Xin and He, Xiangnan, Guo, Guibing and Chen,
Long and Chua Tat-seng and Jose, Joemon M. fBGD: Learning Embeddings
from Positive Unlabeled Data with BGD. In UAI 2018: Association for
Uncertainty in Artificial Intelligence. (Full paper), Part III.

7. Xin, Xin* and Yuan, Fajie* and He, Xiangnan, and Jose, Joemon M.
Batch IS NOT Heavy: Learning Word Representations From All Sam-
ples. In ACL 2018: Association for Computational Linguistics. (Full pa-
per), Part III.

8. Yuan, Fajie and Alexandros, Karatzoglou and Ioannis, Arapakis and
Jose, Joemon M. and He, Xiangnan. A Simple but Hard-to-Beat Baseline
for Session-based Recommendations. arXiv preprint 2018 arXiv:1808.05163
Part IV.

10

Chapter 2

Background of Implicit
Recommendation

In this chapter, our main focus is on investigating the item recommendation
problem from implicit feedback. Before reviewing related work about implicit
recommendation, we first introduce the general background of recommender sys-
tems, including the goals, formulations and types. Since our main contribution
in this thesis is to develop models for implicit recommendation, we will reca-
pitulate several classic recommendation models, including well-known prediction
functions and objective functions for implicit feedback. Finally, we describe the
evaluation strategy for implicit feedback recommendation tasks. Specific related
work and recommendation models will be further discussed in each contribution
chapter.

2.1 Overview on Recommender Systems
2.1.1 Goals and Formulation of Recommender Systems

The goal of a recommender system is defined slightly different in different litera-
ture and from different perspectives. From the merchant perspective, the primary
goal of a recommender system is to boost product sales so that to increase their
profits. By recommending users carefully selected items, recommender systems
bring relevant items to matched users, which leads to the increase of sales volume
and profits for the business (Aggarwa, 2016). On the other hand, from the cus-
tomer perspective, the goal of a recommender system should focus on improving
the customer experience by, for example, helping them filter out irrelevant items

11

2.1 Overview on Recommender Systems

and find preferred items. Before discussing the goals of recommender systems,
we first formulate the recommendation problem by the following two ways:

• Preference value prediction: the recommendation problem is usually for-
mulated as a preference prediction problem (Koren, 2009). The recommen-
dation process is to estimate the relevance score for an observed user-item
interaction, and correspondingly, items with higher scores are recommended
to the user by priority. As an instance, Netflix awarded a 1 million prize
to a developer team in 2009 for a 10% improvement of their company’s
rating prediction algorithm. In the prediction setting, it is assumed that
there are m users and n items, which corresponds to the m × n matrix.
In the matrix, there are a collection of rated items available for each user.
The recommender system will then predict the ratings for the remaining
unrated items. The problem is also reformulated as a rating completion
problem (Aggarwa, 2016) as the recommendation algorithm is designed to
estimate the remaining items in the matrix by leveraging the observed rat-
ings.

It is worth mentioning that preference value prediction is not limited to the
rating prediction task. In a practical recommender system, there are various
features (e.g., watching time of a video, check-in frequencies of a location, or
purchase histories) that can be converted to a user’s preference, rather than
only user ratings. Moreover, the difference of rating values only indicates
whether the user is satisfied or not after the interaction (such as, purchase,
watching or listening) with the item, but not explicitly reflects how much
he/she like the item before the interaction. In fact, most real-world recom-
mender systems focus more on the prediction accuracy regarding how much
the user want to interact with the item, but not the rating after finishing
the interaction.

• Item ranking: for real-world recommendation scenarios, the final recom-
mended items are provided to users by a ranked list of potentially matched
items. From this perspective, the absolute rating values of recommended
items are not important for either users or merchants. For a user, the recom-
mendation is regarded as successful if the matched items returned to them

12

2.1 Overview on Recommender Systems

are at the top (e.g., top-N) positions of the ranked item list. Similarly, for a
merchant, the recommender system is more likely to boost sales if matched
items are recommended to the user by priority. For this reason, the item
ranking task is also referred to as a top-N recommendation problem, which
is the ranking formulation of the recommendation problem (Aggarwa, 2016).

It is worth mentioning that although the absolute values of predicted rat-
ings are not important for the item recommendation task, the preference
value prediction problem is more general since the estimated scores can also
be used for item ranking (i.e., higher scores are ranked higher in the recom-
mendation list.). Moreover, for some related fields such as computational
advertising (Zhang, 2016), the recommendation needs to take into account
other factors, such as the price of ads. The final recommendation list gener-
ated to users are usually based on the multiplication of relevance/preference
score and price. In this case, the real-valued relevance score is more impor-
tant than ranking relations because the multiplication of ranks and price is
not accurate. Despite that, many previous work claim that it is easier and
more natural to optimize the ranking directly instead of first calculating
scores of items and then ranking them by their scores.

In this thesis, we first discuss the way to directly optimize item ranking in Chap-
ter 3, 4 and 5, and then discuss how to generate good recommendations by the
way of preference value prediction in Chapter 6. Both options have their own
advantages and disadvantages, which are explained in the contribution chapters.

As mentioned, increasing revenues for merchants and improving experience
for users are the two primary goals for recommender systems. To achieve this,
practical recommender systems usually takes into account several common goals,
such as recommendation accuracy, novelty and diversity (Aggarwa, 2016). We
briefly introduce the concepts of them since in this thesis our research only focuses
on recommendation accuracy.

• Accuracy: recommendation accuracy refers to how much a user likes or
enjoys an item. It is usually measured by the relevance between users and
returned items. Accuracy or relevance is regarded as the most important
goal and evaluation criterion for a recommender system (Castells et al.,

13

2.1 Overview on Recommender Systems

2011). Detailed evaluation methods for recommendation accuracy will be
discussed later in this chapter.

• Novelty or serendipity: it refers to the ability of a recommender system gen-
erating unusual or novel recommendations which are preferred by the user
(Hurley and Zhang, 2011). Novelty or serendipity is a useful metric to rem-
edy the defects of relevance-based recommendations since it often happens
that a recommender system always returns a list of relevant items, which
however are well-known by the user and thus lack of novelty. Users tend
to feel bored when interacting with systems that recommend only known
items. From the user perspective, recommending items with some fortunate
discoveries inspires their interests and build trust relations with the recom-
mender systems; from the merchant perspective, recommending serendipity
items may directly result in the increase of product sales. Moreover, the
merchant will have long-term and loyal customers.

• Diversity: In many cases, generating only similar items may not be useful
for the users. A recommender system should generate items of different
types so that the user may at least like one of these items (Aggarwa, 2016).
Note that diversity has different meanings with novelty and serendipity
though with similar notions. Specifically, novelty focuses on how different
the recommended items are, with respect to “what have been seen before”,
while diversity focuses on how different the recommended items are, with
respect to each other (Vargas and Castells, 2011).

Despite the fact that much literature has recognized that novelty and diversity are
also important factors to consider when building practical recommender systems,
by far research in diversity and novelty is still not well-established, particularly
in the consensus of the evaluation methodologies (Wit, 2008). Hence, this thesis
positions itself in the most popular research line, i.e., improving the recommen-
dation accuracy.

2.1.2 Types of Recommender Systems

As mentioned in Chapter 1, recommender systems can be broadly classified into
two categories: collaborative filtering and content/context-based recommenda-

14

2.1 Overview on Recommender Systems

tions, according to the way to generate recommendations.

2.1.2.1 Collaborative Filtering Based Recommendations

Collaborative filtering (CF): CF is regarded as the most basic technique used for
personalized recommender systems. It is a method of “making automatic pre-
dictions (filtering) about the interests of a user by collecting preferences or taste
information from many users (collaborating)1”. In a CF recommender system,
it is assumed that a user who has similar tastes or opinions as others may en-
joy items preferred by these users. From the technique perspective, CF based
recommendation can be grouped into memory-based (Linden et al., 2003) and
model-based (Koren et al., 2009) approaches.

Memory-based CF methods, aka neighborhood-based CF, are widely used in
early recommendation literature (Sarwar et al., 2001) and industry (e.g., in the
Amazon recommender system (Linden et al., 2003)). It can be broadly divided
into user-item CF and item-item CF. The common approach for user-item CF
is to find users that are similar to the target user by leveraging the similarity of
ratings (or interaction frequency), and then recommend items that those similar
user liked. By contrast, item-item CF typically first focuses on users who like
the particular item, and then recommend other items that those users also liked2.
For better understanding, they are typically expressed as follows (Linden et al.,
2003):

User-item CF: users who are similar to you also liked/viewed/bought...
Item-item CF: users who liked/viewed/bought this also liked/viewed/bought...
In practice, memory-based CF techniques can be implemented by calculating

the distance metric, such as cosine similarity (Linden et al., 2003), Pearson cor-
relation (Sheugh and Alizadeh, 2015) and Jaccard coefficient3. For example, in
the user-item CF setting, we assume two users, A and B, are represented by two
vectors a and b4, the cosine similarity is defined as:

similarity(a,b) = cos(a,b) =
ab

‖ a ‖‖ b ‖
(2.1)

1https://en.wikipedia.org/wiki/Collaborative_filtering
2https://cambridgespark.com/content/tutorials/implementing-your-own-recommender-systems-in-Python/

index.html
3http://ase.tufts.edu/chemistry/walt/sepa/Activities/jaccardPractice.pdf
4a and b can be simply created by extracting the corresponding rows or columns from the user-item matrix.

15

https://en.wikipedia.org/wiki/Collaborative_filtering
https://cambridgespark.com/content/tutorials/implementing-your-own-recommender-systems-in-Python/index.html
https://cambridgespark.com/content/tutorials/implementing-your-own-recommender-systems-in-Python/index.html
http://ase.tufts.edu/chemistry/walt/sepa/Activities/jaccardPractice.pdf

2.1 Overview on Recommender Systems

Once the similarity scores are achieved, recommendations can be generated by
choosing items that are preferred by the top-N similar users. The main advantages
of memory-based recommendations are that they are simple to implement and
the generated recommendations can be well explained (Aggarwa, 2016).

In contrast to memory-based CF, model-based CF does not need to explic-
itly calculate the similarities between users and items. Instead, it usually relies
on machine learning and data mining techniques to automatically learn the pa-
rameters by certain optimization framework. Examples of model-based methods
include but are only limited to latent factor models (aka, embedding models) (Ko-
ren et al., 2009), boosting (Chen and Guestrin, 2016), tree models (Loh, 2011),
SVM (Herbrich et al., 1999) and neural network models (He et al., 2017). Among
these methods, factorization models (such as matrix factorization (Koren et al.,
2009) and factorization machines (Rendle, 2012)) and neural network models (He
et al., 2017) are most successful in recent literature and are also the focus of
this thesis. Compared with the memory-based methods, model-based CF tech-
niques are usually built based on a low-dimensional models (e.g., factorization
techniques). As a result, model-based models take less memory since they do not
need to store the original rating matrix; moreover, they are usually much faster
in the preprocessing phase as the quadratic complexity for calculating similarity
between users and items are omitted (Aggarwa, 2016). Another advantage is the
regularization strategy which helps models avoid the overfitting problem (Ag-
garwa, 2016). In this thesis, all our proposed algorithms are model-based. Full
details will be further discussed later in this chapter and also in the following
contribution chapters.

2.1.2.2 Content/Context-Based Recommendations

The basic collaborative filtering based recommendation only consider the rela-
tions of users and items without leveraging other information. However, in many
practical recommender systems, items and users are often characterised by a set
of predefined features (Wit, 2008). For example, in a news recommender system,
the content (e.g., words, title, author, and genre) of the news contains significant
features to describe its properties. In this scenario, the basic CF models may lose
important information, leading to suboptimal recommendations. In Chapter 3

16

2.1 Overview on Recommender Systems

and 4, we have shown that in a music recommender system, the features of music
tracks, i.e., the album and artist information, largely influence the accuracy of
recommendation models. The content information can be obtained directly or ex-
tracted from the recommender system. Recommendations based on the content
information of items is usually referred to as content-based recommendations.
Moreover, for a real-world recommender systems, there are some additional con-
text information for users, such as the location, time, social friends, weather and
seasons, which also has an effect on users’ preference and decisions making. Still
using the same example, a music recommender system provides different recom-
mendations based on the time of the day. In fact, it is quite possible a user’s
preference for a music may change in different time of a day1. Recommendation
process based on context information of users is often referred to as context-based
or context-aware recommendations. For clarity, we refer user-related features as
context (including user’s profile) and item-related features as content in this the-
sis. The main advantage of content/context-based recommendation is to alleviate
the problem of data sparsity. It usually performs well when there are enough user
and item feature information. However, one drawback is that the content and
context information is often missing for many users and items in large-scale real-
world recommender systems. In practice, recommender systems usually combine
both collaborative filtering and content/context information (De Campos et al.,
2010), referred to as the hybrid recommendation. In our thesis, we design rec-
ommendation models which can be used in both basic collaborative filtering and
content/context-based settings. For example, we evaluate the performance of
LambdaFM (Yuan et al., 2016b,a), BoostFM (Yuan et al., 2017), GeoBPR (Yuan
et al., 2016d) and fBGD (Yuan et al., 2018b) with both basic collaborative filter-
ing baselines and content/context-based models. Note that the neural network
model of NextItNet proposed in Chapter 7 is developed without considering the
content/context-information.

1https://en.wikipedia.org/wiki/Collaborative_filtering

17

https://en.wikipedia.org/wiki/Collaborative_filtering

2.2 Overview on Implicit Recommendation

2.2 Overview on Implicit Recommendation

As has been mentioned in Chapter 1, recommender systems can also be classified
according to the type of observed feedback. Most early recommendation literature
focus on explicit feedback based on users’ ratings (Koren et al., 2009; Karatzoglou
et al., 2010), while implicit feedback, such as views, clicks and purchases, is
more pervasive and can be collected in a much cheaper way than user ratings
(Rendle and Freudenthaler, 2014) since users do not need to explicitly express
their preference. In recent years, implicit feedback has attracted more and more
attention than explicit feedback in the recommender system domain (Hu et al.,
2008; Pan et al., 2008; Rendle et al., 2009b; Pan and Chen, 2013; Zhao et al.,
2014; Rendle and Freudenthaler, 2014; Yuan et al., 2016d,b, 2017; He et al., 2016c;
Bayer et al., 2017). In this section, we will review related contributions regarding
item recommendations from implicit feedback.

The most important characteristics of implicit feedback based recommenda-
tion are: (1) negative and missing (unobserved) feedback are mixed together; (2)
unobserved feedback has a much larger scale than positive feedback; and thus (3)
the training data has huge sparsity. It is computationally expensive to leverage all
unobserved feedback for designing a recommendation algorithm. To solve these
problems, a variety of recommendation models have been proposed.

To deal with these issues, several solutions were proposed. A typical solution
is to treat all unobserved data as negative example by Pan et al. (2008). Clearly,
this strategy are not optimal since many unobserved items could be positive if the
user knows them. Hence, treating all of unobserved data as negative may mislead
the learning model towards an incorrect optimization direction. The other way
is that we treat all unobserved data as unknown, and feed the recommendation
model with only positive data. By this method, the predictions on all data will
be positive values since only positive data is available for training; moreover, the
recommendation may result in poor prediction accuracy since a large amount of
useful negative data is missing during training. The above extreme strategies
are referred to as AMAN (all missing as negative) and AMAU (all missing as
unknown) (Pan et al., 2008).

To overcome the two extremes, Pan et al. (2008) proposed to balance the

18

2.2 Overview on Implicit Recommendation

extent of treating unobserved data as negative. They proposed two solutions,
namely weighting and sampling, which allow to tune the tradeoff when using neg-
ative examples. Specifically, they proposed a weighted low-rank approximation
technique following Srebro and Jaakkola (2003), which solves a generic problem
with positive data as “1” and unobserved data as “0”. Furthermore, they im-
proved the original model by designing three types of negative weighing schemes,
namely uniform, user-oriented and item-oriented weighting schemes. Specifically,
they first assign a constant value as the weights for all negative examples, which
corresponds to the AMAN assumption. As just mentioned, the approach easily
results in suboptimal recommendation quality since not all unobserved data are
negative. To improve the uniform weight, they proposed the second weighting
scheme, i.e., user-oriented weight. The assumption is that if a user has shown
more positive observations, it is more likely that he/she does not like other items.
That is, the unobserved data for this user has more chances to be real negative
data. The third weight is item-oriented, which assumes that if an item has seldom
been chosen as positive examples, the unobserved data for this item is negative
with higher probability. However, during evaluation the authors found that the
item-oriented weighting scheme is worse than the uniform weight. The main rea-
son is probably because they made an opposite assumption since less-be-chosen
(i.e., unpopular) items may have lower probability to be true negative than the
popular items. This is intuitively correct because the popular item that is not
chosen by the user probably suggests that he/she does not like it considering that
the user may know it well due to its popularity. Following the same intuition of
weighting schemes, they also investigate three sampling strategies, which can be
regarded as the first work about negative sampling in the recommender system
field. Their empirical results show that both weighting and sampling methods
outperform baselines (i.e., AMAN and AMAU).

Another well-known work for implicit feedback recommendation work is pro-
posed by Hu et al. (2008), referred to as Weighted Regularized Matrix Factor-
ization (WRMF). The work has the same intuition with Pan et al. (2008) by
optimizing a weighted least square regression function. The main difference is
that Hu et al. (2008) designed the weight only for the positive data while all
negative data is treated equally. In addition, because of computing the closed-

19

2.2 Overview on Implicit Recommendation

form equation, the time complexity of the standard optimization is cubic in terms
of the dimensions of latent factors. To solve the efficiency issue, a fast matrix
factorization model by leveraging element-wise alternative least square (ALS)
learner was proposed by He et al. (2016c). The time complexity of the efficient
ALS optimizer (eALS) has reduced from O(k3) to O(k2), where k is the embed-
ding dimension. Although eALS has achieved important speed-up, it can only
be used for the basic collaborative filtering setting with only user id and item
id as input features. Motivated by this, a following work by Bayer et al. (2017)
has presented a generic eALS model, referred to as iCD, which can be applied
to any “k-separate” model, such as matrix factorization (Koren et al., 2009), fac-
torization machines (Rendle, 2010) and some tensor factorization models (Xiong
et al., 2010). iCD can not only be used for basic collaborative filtering scenario,
but also in context-aware item recommendations. While effective, the proposed
generic eALS models have not been compared with the state-of-the-art baselines.
As a result, its real performance in item recommendation task is unknown. In ad-
dition, iCD is optimized by the Newton method, which relies on the second-order
derivative and is sensitive to parameter initialization and regularization terms.

Another line of research for implicit recommendation is based on learning-to-
rank (LtR) models (Liu et al., 2009). This is because the implicit item recom-
mendation task is essentially to solve a ranking problem, i.e., ranking the relevant
or preferred items for the user at the top of the candidate list. The seminal work
of the LtR model for implicit feedback scenario is called Bayesian personalized
ranking (BPR) by Rendle et al. (2009b), which is a pairwise LtR algorithm. The
basic idea of BPR is to make sure that the observed items should be ranked
higher than the unobserved ones under the rule of Bayesian maximum a posteri-
ori probability (MAP) estimate. BPR optimization is generic and not limited to
the basic matrix factorization model. For example, many works proposed to use
BPR to optimize tensor factorization models (Rendle and Schmidt-Thieme, 2010),
pairwise interaction tensor factorization (Rendle and Schmidt-Thieme, 2010) ma-
chines, factorization machines (Rendle, 2010), and neural networks (Niu et al.,
2018). Moreover, there are also some works (Pan and Chen, 2013; Zhao et al.,
2014; Rendle and Freudenthaler, 2014; Yuan et al., 2016b) that claim the original
BPR assumption is suboptimal in specific implicit feedback tasks. For exam-

20

2.2 Overview on Implicit Recommendation

ple, Pan and Chen (2013) argued that the original BPR assumption of the joint
likelihood of pairwise preferences of two users may not be independent of each
other, and further a user may potentially like an unobserved item to an observed
one. To deal with this, the authors made a new assumption and introduced the
group preference by incorporating more interactions among users. They named
the algorithm as group Bayesian personalized ranking (GBPR). The basic idea
of GBPR is to replace the individual pairwise relationship with a group rela-
tionship that involves group preference. After GBPR, social BPR (Zhao et al.,
2014) is proposed that incorporates the social preference. The assumption of
social BPR is that a user’s preference to a positive item should be higher than
that of the unobserved items which are positive to his/her social friends, which
are further higher than that of the unobserved items without any interaction by
his/her friends. There are also work (Rendle and Freudenthaler, 2014) claiming
that the uniform sampler in the original BPR is suboptimal since the item dis-
tribution in real-word datasets are tailed. As a result, most randomly sampled
unobserved items fall into the long tail. Rendle and Freudenthaler (2014) pointed
out that the unobserved items that are into the long tail are not informative and
contribute less on the parameter update by stochastic gradient descent (SGD)
optimization. To address the problem, they proposed an adaptive sampling that
dynamically draws unobserved items with smaller ranks (or higher scores). They
further showed that BPR with the adaptive sampler converges much faster than
that with the uniform sampler. Interestingly, they found that the popularity-
based sampler hurts the recommendation accuracy although it converges much
faster. While in our evaluation we empirically found that BPR with the popu-
larity sampler can significantly improve the basic uniform sampler (Yuan et al.,
2016b). The reason may be because in Rendle and Freudenthaler (2014) the au-
thors oversampled only a small portion of very popular unobserved items while
most relatively popular items are missing. Losing important negative examples
will easily result in poor performance. Our finding is consistent with that in the
word embedding task1.

We noticed that there were also several listwise based recommendation models
1We observed that the adaptive sampling (Rendle and Freudenthaler, 2014) idea can be used beyond the

recommender system domain. For example, we have applied the same approach for the word embedding task
and achieved better embedding vectors than the original popularity-based sampler (See Chen et al. (2017)).

21

2.3 Implicit Feedback Model Overview

which can be used for the implicit feedback scenario, such as (Shi et al., 2012b,a).
Although listwise methods directly optimize the top-N measures, most methods
empirically do not yield better recommendations than the pairwise BPR model
(Shi et al., 2014). The is because most top-N measures are either non-differential
or non-continuous. Approximating these ranking measures or proposing bound
theories typically cannot guarantee the ranking accuracy. For example, Shi et al.
(2014) showed that BPR optimization is better than the listwise optimization
with the same prediction function. Hence, in this thesis, most of the proposed
recommendation models are either pairwise1 or pointwise.

2.3 Implicit Feedback Model Overview

A recommendation model typically consists of two modules: a prediction function
and a loss function. Considering that features in recommender systems are usu-
ally very sparse, prediction functions are reqired to have the capacity in dealing
with sparsity. One of the most popular prediction functions are factorization (or
embedding) based models, which are superior to classic nearest-neighbor tech-
niques (Koren et al., 2009). Recently, deep learning models have attracted much
attention in recommender systems domain. Compared with shallow factorization
models, deep learning models are more expressive, especially for capturing the
non-linear relations between the low-rank latent vectors of users and items. In
terms of loss functions, they are generally divided into three categories, point-
wise, pairwise and listwise approach. Among these loss functions, pairwise and
pointwise approach have gained more popularity. In the following, we will first re-
capitulate well-known prediction models including basic factorization models and
complex deep learning models, and then introduce two ways of model training
(i.e., pointwise and pairwise) alongside with the sampling strategies.

2.3.1 Factorization Models

In recent decade, latent factor models, aka embedding models, have become the
most successful model in collaborative filtering based recommendation. These
models have been comprehensively studied for various recommendation tasks.

1It is worth mentioning that the LambdaFM model proposed in Chapter 3 is implemented by the pairwise
method although it is formulated by the listwise motivation.

22

2.3 Implicit Feedback Model Overview

In this section, we will systematically review several representive factorization
models.

2.3.1.1 Basic Matrix Factorization (Koren et al., 2009)

Matrix factorization (MF) is regarded as the most widely used latent factor model
in recent years (Koren et al., 2009). MF-based models are not only used in
recommender system domain, but also widely used in natural language process
(Pennington et al., 2014) and computer vision (Weston et al., 2011) domains.
The factorized low-rank matrix is also referred to as embedding matrix. The
basic idea of matrix factorization model is to map both users and items to a joint
latent factor space with dimension k. The user-item interactions are typically
modeled as dot product in the mapped space. Following the definition in Koren
et al. (2009), let qi ∈ Rk be the vector that contains latent features of item i, and
on similar lines, pu ∈ Rk be the vector for user u. Specifically, for a given item
i, qi represents the extent to which the item possesses those features, positive or
negative, large or small; for a given user u, pu describes the components of user’s
profile, i.e., how much the user is interested in the corresponding factors. The
dot product rating function qTi pu captures the interaction between u and i —
the overall preference u has on i. Let ŷui be the rating function, we have

ŷui = qTi pu =
k∑

f=1

pufqif (2.2)

where higher value of ŷui denotes user u and item i have a more relevant match.
Previous studies (Gogna and Majumdar, 2015) also showed that actual ratings
are not only a simple dot product operation between the user and item latent
vectors but also contains bias. For example, users who usually rate higher than
the average score have a positive bias. Likewise, items that are popular tend to
be rated higher by most users than long tailed items also have a positive bias.
With the bias terms, the rating equation can be defined as

ŷui = qTi pu + bu + bi + b (2.3)

where bu, bi and b are user bias, item bias and the average rating of all observed
ratings. For implicit feedback settings, bu and y can be safely removed since the
values of them do not influence the overall rank of items for the same user.

23

2.3 Implicit Feedback Model Overview

2.3.1.2 SVD++ (Koren and Bell, 2015)

SVD++ is an enhanced factorization model by considering users’ additional in-
formation as opposed to pu that only includes the latent features of current user.
According to (Koren and Bell, 2015), SVD++ offers accuracy superior to basic
MF model, particularly in cases where independent implicit feedback is missing
since one can capture an important signal by taking account of which items users
have rated, regardless of their rating value.

Following the definition in Koren and Bell (2015), in the SVD++ model a
second set of item factors is added into the user latent vector, relating each item
i to a factor yi ∈ Rk. The additional item factors are utilized to describe users
based on the set of items that they have previously rated. The model is defined
by

ŷui = bu + bi + b+ qTi (pu + |R(u)|−
1
2

∑
j∈R(u)

zj) (2.4)

where R(u) denotes the set of items rated by user u.
Different from the basic MF model, in SVD++, a user is described by two

components, i.e., pu + |R(u)|−
1
2
∑

j∈R(u) zj. pu is learned from the explicit rating
data, while the additional term

∑
j∈R(u) zj represents the effect of implicit feed-

back. Various SVD++ versions can be designed by the similar way to construct
additional user implicit feedback. For example, if the user has implicit preference
to the items denoted by R1(u), and also another type of implicit feedback to the
items denoted by R2(u), we could have a more expressive model (Koren and Bell,
2015)

ŷui = bu + bi + b+ qTi (pu + |R1(u)|−
1
2

∑
j∈R1(u)

z
(1)
j + |R2(u)|−

1
2

∑
j∈R2(u)

z
(2)
j) (2.5)

By this way, the preference of each source of implicit feedback can be automati-
cally learned by the algorithm by updating respective parameters.

2.3.1.3 SVDFeature (Chen et al., 2012)

SVDFeature is a machine learning tookit designed for feature-based collaborative
filtering. Its feature-based setting allows the model to incorporate various side
information (e.g., social relations, users’ context and item metadata) for both
user and items with different input data. The original SVDFeature prediction

24

2.3 Implicit Feedback Model Overview

function models three factors as a feature vector. Following (Chen et al., 2012),
it is defined as

ŷui =
s∑

d=1

γdb
g
d +

n1∑
d=1

αdb
u
d +

n2∑
d=1

βdb
i
d + (

n1∑
d=1

pdαd)
T (

n2∑
d=1

qdβd) (2.6)

where the model parameter Θ = {bg, bu, bi,p,q}. pd ∈ Rk and qd ∈ Rk are k
dimensional latent factors associated with each feature. bud , bid and bgd are bias
terms for user, item and global features (i.e., αd, βd and γd respectively).

According to Chen et al. (2012), SVDFeature is a generic prediction function
and can reduce to basic matrix factorization if the feature vector only includes user
and item features. Moreover, it can mimic several state-of-the-art factorization or
embedding models, and can be applied not only in recommender systems but also
in other fields such as word embedding with word prior knowledge. According
to Eq. (2.6), we can see SVDFeature only models interactions between user- and
item- field variables without considering the interactions in each field.

2.3.1.4 Factorization Machines (Rendle, 2010)

Factorization Machines (FM) is a generic predictor that combines the merits of
Support Vector Machines (SVM) with factorization models. However, compared
with SVM, FM is able to deal with very sparse data with any type of real valued
feature vector using factorized parameters. More detailed relations with SVM
has been shown in the original paper (Rendle, 2010). In addition, it can mimic
most factorization models (e.g., MF, SVD++, timeSVD++ (Koren, 2010), FPMC
(Xiong et al., 2010), PITF (Rendle and Schmidt-Thieme, 2010)) just by feature
engineering. In contrast to SVDFeature, it takes into account of all pairwise
interactions between variables. According to Rendle (2010), the model equation
for a factorization machine of degree m = 2 is defined as

ŷ(x) = w0 +
n∑
d=1

wdxd︸ ︷︷ ︸
linear

+
n∑
d=1

n∑
d′=d+1

〈vd,v′d〉xdx′d︸ ︷︷ ︸
polynomial

(2.7)

where xd is d-th element in the sparse feature vector x = (xc,xi). xc and xi are
regarded as the latent/embedding factors of user-field (or context)1 and item-field
(or item) respectively. For example, in the feature-based recommender system

1A user-field refers to the user-related context, such as location, time and social friends. In the following
chapters, we use user-field (e.g., in Chapter 6) and context (e.g., in Chapter 3 & 4) interchangeably.

25

2.3 Implicit Feedback Model Overview

setting, x can be expressed as follows:

x = (

users︷ ︸︸ ︷
0, ..., 1, ..., 0,

friends︷ ︸︸ ︷
0, 0.5, ..., 0.5, 0,

location︷︸︸︷
0, 1 ,

time︷ ︸︸ ︷
0, 1, 0︸ ︷︷ ︸

xc:user-field (or context)

,

music tracks︷ ︸︸ ︷
0, ..., 1, ..., 0,

artists︷ ︸︸ ︷
0, ..., 1, ..., 0,

albums︷ ︸︸ ︷
0, ..., 1, ..., 0)︸ ︷︷ ︸

xi:item-field (or item)

The model parameters Θ that have to be estimated are w0 ∈ R,w ∈ Rn and
V ∈ Rn×k, and 〈·, ·〉 denotes the dot product of two vectors of size k:

〈vd,vd′〉 =
k∑

f=1

vd,f · vd′,f (2.8)

The linear part of FM contains unary interactions of each input variables xk with
the target, which is identical to a linear regression model. The polynomial part
models the interaction between the d-th and d′-th variables, which distinguishes
itself from standard polynomial regression by using a factorized parametrization.
The authors have proved that FM can be computed in linear complexity O(kn)

as Eq. (2.7) can be reformulated as

ŷ(x) = w0 +
n∑
d=1

wdxd +
1

2

k∑
f=1

(
(
n∑
d=1

vd,fxd)
2 −

n∑
d=1

v2
d,fx

2
d

)
(2.9)

In collaborative filtering scenarios, most elements xk in a vector x are zero. For
example, let N(x) be the number of non-zero elements in the feature vector x
and N(x) be the average number of non-zero elements in all vectors. We can see
that N(x) � n under huge sparsity, i.e., the complexity becomes O(kN(x)) in
the sparse setting.

2.3.1.5 Tucker Decomposition (Tucker, 1966)

Tucker Decomposition (TD) have also been widely used in feature-based recom-
mendation task, e.g., tag recommendation (Rendle et al., 2009a), by computing
all interactions between the factorization matrices of users, items and tags. The
prediction function of tensor model is computed by multiplying the three feature
matrices to the core tensor, given by

Y = Ĉ ×u Û ×i Î ×t T̂ (2.10)

where Ĉ is the core tensor, and Û , Î and T̂ are the feature matrices for users, items
and tags. ×x denotes the tensor product that multiples a matrix on dimension
x with a tensor. The model parameters Θ are as follows

Ĉ ∈ RkU×kI×kT , Û ∈ R|U |×kU , Î ∈ R|I|×kI , T̂ ∈ R|T |×kT

26

2.3 Implicit Feedback Model Overview

where kU , kI and kT denote the dimension of the low-rank approximation. Ac-
cording to Rendle et al. (2009a), the prediction function ŷuit of tensor factorization
with given feature matrices and the core tensor is defined by

ŷuit =

kU∑
f1=1

kI∑
f2=1

kT∑
f3=1

cf1,f2,f3ûu,f1 îi,f2 t̂t,f3 (2.11)

It is worth noticing that TD is much more computationally expensive than matrix
factorization or factorization machines, which requires O(kUkIkT) complexity.

2.3.2 Deep Learning Models

Although factorization models have achieved huge success during the past decade,
the dot product structure of which have limitations in modeling complex (or non-
linear) interactions between users and items (He et al., 2017). The neural network
with multiple nonlinear layers have been proven to be capable of approximating
any continuous function. There are some recent advances that applied deep neural
networks (DNN) for recommendation tasks and showed state-of-the-art perfor-
mance than classic factorization models. More specifically, He et al. (2017) have
proposed a neural network based collaborative filtering framework, referred to as
NCF, by combining classic matrix factorization and multi-layer perceptron. NCF
has demonstrated significant improvement in contrast with MF model, particu-
larly with more hidden layers. A following work by He et al. (2017) designed
Neural Factorization Machine (NFM) on top of the embedding vector of FM by
stacking additional neural layers. Likewise, NFM is proven to be more expressive
than basic FM model with only one hidden layer. In the following, we shortly
recapitulate the two models.

2.3.2.1 Neural Collaborative Filtering (He et al., 2017)

The basic idea of NCF model is to replace the matrix factorization (or dot prod-
uct) function with a neural architecture so that it can learn and approximate
any distribution in the data. The main structure NCF model is composed of two
parts: a generalized matrix factorization (GMF) and a multi-layer perceptron
(MLP). Specifically, GMF can be regarded as a generalized and extended MF
model since MF is only a special case of GMF. The prediction function of GMF

27

2.3 Implicit Feedback Model Overview

is defined as
ŷui = σ(hT (pu � qi)) (2.12)

where σ and h denote the activation function (i.e., sigmoid function in the paper)
and edge weights of the output layer respectively. Clearly, let σ be an identity
function and h be a constant vector of 1, GMF is reduced to the MF model.
However, if we automatically learn h by training and use non-linear function for
σ, it will generalize MF to a non-linear setting according to He et al. (2017).

The other component MLP is a concatenation of user and item latent vectors.
This design has been widely used in various deep learning work. However, a
simple vector concatenation does not have enough expressiveness to model the
interactions of user and item latent features. To enhance the model, the authors
add more hidden layers on the concatenation vector by adding MLP to learn the
interactions. According to He et al. (2017), the MLP model is defined as

z1 =

[
pu
qi

]
ψ2(z1) = α2(WT

2 z1 + b2)

...

ψL(yL−1) = αL(WT
LzL−1 + bL),

ŷui = σ(hTψL(yL−1))

(2.13)

where Wx, bx and αx represent the weight matrix, bias vector and activation
function for x-th layer respectively. The final NCF model is a combination of
GMF and MLP with a one-layer MLP, which is formulated as

ŷui = σ(hTα(pu � qi + W

[
pu
qi

]
+ b)) (2.14)

Note that in the original paper, the authors argue that GMF and MLP share the
same embedding layer might limit the performance of the combined model and
thus their final training model learns separate embeddings for GMF and MLP.

2.3.2.2 Neural Factorization Machines (He and Chua, 2017)

The NCF model has demonstrated stronger performance than state-of-the-art
factorization models due to the non-linear property, while NCF is tailed for basic
collaborative filtering with only user and item features. Intuitively, it is natural

28

2.3 Implicit Feedback Model Overview

to apply the NCF strategy for a feature-based factorization model such as Fac-
torization Machines (FM). In the following work of He et al. (2017), they present
a neural factorization machine (NFM) model, which increase the non-linearity
of the shallow FM model by stacking more neural layers. With this design, the
original FM model can be seen as a special case of NFM. The most important
module of NFM is a Bilinear Interaction (Bi-Interaction) pooling operation, which
is designed inspired by the efficiency transformation of the original FM model.

fBI(Vx) =
n∑
d=1

n∑
d′=d+1

〈vd,v′d〉xdx′d =
1

2

(
(
n∑
d=1

vdxd)2 −
n∑
d=1

v2
dx

2
d

)
(2.15)

where Vx = {xdvd}. The main difference from the original FM is that original
FM directly computes the final score by the above transformation while NFM will
keep the intermediate result which is the embedding vector. The NFM model is
built on the Bi-Interaction pooling layer with a stack of fully connected layers,
which are capable of learning higher-order interactions between features (Shan
et al., 2016). The prediction function NFM model is given by:

ŷ(x) = w0 +
n∑
d=1

wdxd + hTσL(WL(...σ1W1fBI(Vx) + b1)...) + bL (2.16)

where Wl,bl and σl are the weight matrix, bias vector, activation function for
the l-th layer respectively; h is the neuron weights of the final prediction layer.
The model parameters of NFM are Θ = {w0, {wd,vd},h, {Wl,bl}}.

2.3.3 Objective Functions with Negative Sampling

The learning of recommendation models can be mathematically described as an
optimization problem, the goal of which is to find the best or optimal solution
for the task. To find the optimal resolution, a typical way is to develop the
measurement for the quality of the solution, which is achieved by objective/loss
function. Two most well-known objective functions in the recommender system
domain are pointwise and pairwise methods. Specifically, the pointwise loss func-
tion is typically designed to optimize the least square loss or logistic regression
loss, the goal of which is to minimize the errors between the ground truth score
and estimated score by prediction function. By contrast, the pairwise loss does
not directly optimize the predicted score but instead takes into account the rank
relations of positive and item examples, and penalizes the model if the rank re-

29

2.3 Implicit Feedback Model Overview

lation is incorrect. In this thesis, Chapter 3, 4 and 5 are based on the pairwise
learning-to-rank optimization and negative sampling, while Chapter 6 is based
on the pointwise regression method without sampling (i.e., with full sampling).

2.3.3.1 Pointwise Loss with Negative Sampling

Pointwise loss function concentrates on a singe example (i.e., a user-item pair)
at a time. The basic idea is to deal with a single example and train it with a
regressor/classifier to predict the relevance score that the user has for the item.
There are two commonly used pointwise losses, namely, a square loss for regression
(Pan et al., 2008) and a logistic loss for classification (Mikolov et al., 2013).

Weighted square loss function is the sum of squared difference between target
values and predicted values with a weighting coefficient.

MSE = J(Θ) =
∑

(u,i)∈U×I

αui(ŷui − yui)2 (2.17)

where U and I are the set of users and items. αui is the weight for the user-item
pair, ŷui and yui are the predicted score and ground truth score. By separating the
loss function into positive and unobserved negative examples, it can be rewritten
as

J(Θ) =
∑

(u,i)∈S

α+
ui(y

+
ui − ŷui)

2

︸ ︷︷ ︸
JP (Θ)

+
∑

(u,i)∈(U×I)\S

α−ui(y
−
ui−ŷui)

2

︸ ︷︷ ︸
JM (Θ)

(2.18)

where S is the set of positive examples, JP (Θ) and JM(Θ) are training loss errors
for positive and unobserved examples respectively; y+

ui and y
−
ui are ground truth

score for positive and unobserved data. It is worth noticing that the computa-
tional complexity of JM(Θ) is almost in O(|U ||I|) since the number of positive
items a user has interacted is much less than that of unobserved items. To deal
with such a large number of unobserved examples, most recommendation models
rely on negative sampling (NS) and stochastic gradient descent (SGD) optimiza-
tion for efficient optimization. The basic idea of negative sampling is to select
a small portion of unobserved examples, for example K percentage of them, as
negative for model training to avoid all examples based parameter updating.

J(Θ) =
∑

(u,i)∈S

α+
ui(y

+
ui − ŷui)

2

︸ ︷︷ ︸
JP (Θ)

+
∑

(u,i)∈K((U×I)\S)

α−ui(y
−
ui−ŷui)

2

︸ ︷︷ ︸
J ′M (Θ)

(2.19)

30

2.3 Implicit Feedback Model Overview

The most commonly used negative sampling is based on the uniform sampling.
Logistic loss is also a widely used pointwise method in the implicit recom-

mendation task. The loss function is also used by the Skip-gram model (Mikolov
et al., 2013) in the word embedding task. The sampling based loss function is
defined as

J(Θ) = −
∑

(u,i)∈P

log ŷui︸ ︷︷ ︸
Jp(Θ)

−
∑

(u,i)∈(K(U×I)\S)

log ŷui(1− ŷui)︸ ︷︷ ︸
JM (Θ)

(2.20)

The intuition behind this loss function is to maximize the score of positive exam-
ples while in the same time minimize the score of negative examples. Both the
square loss and the logistic loss offer reasonable recommendations. Theoretically,
the logistic loss may offer better performance than the square one since item rec-
ommendation is actually a classification task rather than a regression one. This
is because users in practice do not care the prediction scores for items but are
more interested in the rank order of items, especially the top ranked items.

2.3.3.2 Pairwise Loss with Negative Sampling

The most well-known pairwise loss function1 is the Bayesian Personalized Rank-
ing (BPR) (aka cross-entropy) loss by Rendle et al. (2009b). BPR is the first
learning-to-rank (LtR) algorithm in the recommender system domain and has
achieved huge success. In contrast with the pointwise loss function, pairwise
loss directly optimizes its model parameters for ranking instead of real-valued
scores. It is worth noticing that the BPR loss is essentially the same loss as
RankNet (Burges et al., 2005), while RankNet learns the shallow neural network
as a scoring function which is non-personalized. The basic idea of the BPR model
is to maximize the cross-entropy loss so that it can maximize the margin between
prediction scores of positive examples and negative examples. The BPR loss
function is defined as

J(Θ) = ln
∏

(u,i,j)∈Ds

σ(ŷuij)p(Θ) =
∑

(u,i,j)∈Ds

lnσ(ŷuij)− λΘ||Θ||2 (2.21)

let I+
u denote the set of positive items user u has interacted, thenDs = {(u, i, j)|i ∈

I+
u ∧ j ∈ I\I+

u } represents the set of all pairwise preferences Ds ⊆ U × I × I, σ
1We have compared the BPR loss with serveral well-known pairwise loss functions for the implicit recom-

mendation task in Chapter 3.

31

2.4 Evaluation of Implicit Recommendation

and λΘ are the logistic sigmoid and regularization parameters. Similar to the the
pointwise loss function, the computational cost of the standard BPR loss with
full gradient is not feasible since it requires O(|S||I|) training triples, where |S| is
the number of all positive examples. Moreover, the optimization for the loss with
full gradient descent leads to slow convergence. To solve above-mentioned issues,
Rendle et al. (2009b) proposed a uniform sampling strategy for unobserved ex-
amples with the SGD optimization. Specifically, instead of using all unobserved
examples, they randomly choose the same number of unobserved example as neg-
ative to construct the (u, i, j) triple. In this case, it only required |S| training
triples, and the computational cost has been largely reduced.

Empirically, with the same negative sampling setting, the pairwise BPR loss
usually offers better recommendations than the pointwise approach (Yuan et al.,
2018b). This is because the item recommendation task from implicit feedback
is actually a ranking task rather than a regression one. The optimal results
in terms of RMSE may lead to suboptimal results for ranking metrics such as
Normalized Discounted Cumulative Gain (NDCG) (McFee and Lanckriet, 2010)
and Mean Reciprocal Rank (MRR) (Shi et al., 2012b). However, an advantage
of pointwise loss function is the flexible sampling ratio for negative examples.
While the pairwise loss function can only construct training pairs by one sampled
negative example and a positive one (He et al., 2017). In Chapter 6, we have
extensively studied the effectiveness on item recommendation by changing the
sampling distribution and size of negative examples.

It is worth mentioning that the above discussed pairwise and pointwise loss
functions are generic and can be applied to various prediction functions intro-
duced in Section 2.3.1 and 2.3.2 as long as these functions has continuous first
order derivative.

2.4 Evaluation of Implicit Recommendation
2.4.1 Implicit Feedback Datasets

In this thesis, we evaluate all our recommendation models on real-world datasets,
such as location recommendation dataset in Yelp1, music recommendation dataset

1https://www.yelp.com

32

 https://www.yelp.com

2.4 Evaluation of Implicit Recommendation

in Yahoo!1 and Lastfm music2. Each dataset includes at least a number of user
IDs and item IDs. Each entry in the dataset contains an observed user-item
pair. Note explicit rating data can also be used for implicit feedback based item
recommendation. The common approach is to translate rating data as a binary
data. For example, we can assume that any ratings above 3 correspond to the
positive feedback, and unobserved feedback and ratings below or equal to 3 is
negative feedback. The rating value 3 is a threshold to be set according to the
actual application. Some datasets may contain user contexts and item metadata
(see x in section 2.3.1.3), which can be used for context-aware recommendations.
In each dataset, all observed feedback is positive, whereas we usually do not
store unobserved feedback as it can be automatically calculated. It is worth
mentioning that in this thesis we do not target the cold start problem. To this
end, we usually filter out users and items with a small number interactions (e.g.,
less than 5) (Rendle et al., 2009b). The detailed statistics of each dataset are
shown in each contribution chapter.

2.4.2 Evaluation Protocols

For evaluation, the recommendation dataset will first be split into training and
testing sets, such as in Rendle et al. (2009b). The recommendation models are
learned on the training set, while evaluated on the testing set. For example, we
can use 80% of the dataset for training, while the remaining 20% is for testing.
The most commonly used evaluation protocols are 5-fold cross validation (Yuan
et al., 2016b) and leave-one-out evaluation (Rendle et al., 2009b). All high-
parameters are manually tuned based on either the training loss or a validation
set (e.g., in Chapter 7). Specifically, we can search the optimal value for a spe-
cific hyper-parameter while fixing others, following Rendle and Schmidt-Thieme
(2010). In this thesis, all evaluation is based on the offline protocol (Levy, 2013)
(i.e., based on unchanged datasets). The detailed evaluation strategies are given
in each chapter for corresponding models.

1https://uk.yahoo.com/
2https://www.last.fm

33

 https://uk.yahoo.com/
 https://www.last.fm

2.4 Evaluation of Implicit Recommendation

2.4.3 Evaluation Metrics

As has been mentioned, item recommendation from implicit feedback is typically
regarded as a top-N ranking problem. As a result, the evaluation is typically
based on the standard ranking metrics. Despite this, there are several other ways
to evaluate a recommender system, such as novelty (Hurley and Zhang, 2011),
serendipity (Lu et al., 2012) and diversity (Hurley and Zhang, 2011). Since this
thesis mainly focuses on improving recommendation accuracy, we only evaluate
recommendation quality by accuracy metrics. In the remainder of this thesis, we
will evaluate both the proposed recommendation models and baselines on popular
ranking metrics, which are “translated” from the information retrieval field. They
are Precision@N and Recall@N (denoted by Pre@N and Rec@N respectively),
Normalized Discounted Cumulative Gain (NDCG) (McFee and Lanckriet, 2010)
and Mean Reciprocal Rank (MRR) (Shi et al., 2012b), and one (binary) classi-
fication metric, i.e., Area Under ROC Curve (AUC). We perform evaluation on
the testing set and compute the overlap between the predicted items and ground
truth items with the following ranking metrics. The ranking metrics are defined
as follows:

• Precision and recall are binary metrics used for estimating binary output.
Since users care more about the items ranked at the top positions, it makes
more sense to calculate precision and recall for the first N items instead of
all items. N in practice can be assigned as a small value, such as 5, 10 or
100 etc. Pre@N and Rec@N are defined as follows:

Pre@N =
tpu

tpu + fpu
, Rec@N =

tpu
tpu + tnu

(2.22)

where tpu is the number of items contained in both the ground truth and
the top-N rank list predicted by algorithms; fpu is the number of items
contained in the top-N rank list but not in the ground truth; and tnu is
the number of items contained in the ground truth but not in the top-N
rank list (Li et al., 2015b). The final performance reported is an average of
individual metric of all users, which applies to all other metrics below.

• NDCG measures the performance of a recommender system based on the

34

2.4 Evaluation of Implicit Recommendation

graded relevance of the recommended items and is defined as

NDCG|I| =
DCG|I|
IDCG|I|

, DCG|I| =

|I|∑
i=1

2reli − 1

log2 (i+ 1)
(2.23)

where reli represents the relevance score of the candidate item at the po-
sition i, here we use a binary value for quantity (reli = 1 if it is relevant,
otherwise reli = 0). IDCG|I| is calculated from the ground truth. An
intuitive example is given: assuming the ground truth of the item list is
{1, 1, 0, 0, 0} and the predicted label is {0, 1, 0, 0, 1}, where ‘1’ and ‘0’ de-
note positive and unobserved item, IDCG|I| is 1

log2 (1+1)
+ 1

log2 (2+1)
= 1.63,

and DCG|I| is 1
log2 (2+1)

+ 1
log2 (5+1)

= 1.01, NDCG|I| is 1.01/1.63 = 0.62.
Similar to Pre@N and Rec@N, we can also use NDCG@N for true evalu-
ation, although NDCG itself is a ranking metric. This also holds for the
MRR metric.

• Reciprocal Rank (Shi et al., 2012b) measures the rank of the first relevant
item in the item list for a user, which is defined as

RR = 1/ranki (2.24)

The Mean Reciprocal Rank (MRR) is the average of the reciprocal ranks
of all users.

MRR =
1

|U |

|U |∑
u=1

1/ranki (2.25)

• AUC (Rendle et al., 2009a) is widely used in classification task to evaluate
which model predicts the classes best. Item recommendation can also be
explained as classification task, i.e., to classify whether the positive items are
ranked higher than the negative ones. AUC implies the recommender ability
to distinguish positive examples from negative examples. The average AUC
is usually defined as

1

|U |

|U |∑
u=1

1

|Iu||I\Iu|
∑
i∈|Iu|

∑
j∈|I\Iu|

δ(ŷuij > 0) (2.26)

where

δ(ŷuij > 0) =

1, ŷuij > 0

0, else
(2.27)

and |Iu| denotes the size of observed items for user u. Note that AUC is

35

2.4 Evaluation of Implicit Recommendation

position-dependent by taking account of overall ranking performance.

36

Part II
SGD with Negative Sampling

Learning from large-scale unobserved implicit feedback is
computationally very expensive in practice. To address this
issue, an intuitive way is to perform negative sampling (NS),
i.e., sampling a fraction of non-observe items as negative for
training. In this part, we will introduce three NS-related im-
plicit recommendation models, namely, LambdaFM (Lambda
Factorization Machine) in Chapter 3, BoostFM (Boost Fac-
torization Machines) in Chapter 4, and GeoBPR (Geograph-
ical Bayesian Personalized Ranking) in Chapter 5. For each
algorithm, we conduct extensive experiments to evaluate its
performance with state-of-the-art baseline algorithms.

37

Chapter 3

Lambda Factorization Machines

In this chapter, we introduce Lambda Factorization Machines (LambdaFM),
which is state-of-the-art negative sampling based recommendation model specif-
ically designed for implicit feedback. We use Factorization Machines (FM) as
the prediction function since it is a generic model and well suited for both
content/context-based recommendation and basic collaborative filtering (CF) set-
tings. We provide the motivation from item ranking perspective and solve it by
negative sampling strategy.

Previous work —Pairwise Ranking Factorization Machines (PRFM) (Qiang
et al., 2013)— that learns FM by standard pairwise loss functions and uni-
form sampling have achieved great success. However, we argue that good rec-
ommenders particularly emphasize on the accuracy near the top of the ranked
list, and typical pairwise loss functions might not match well with such a re-
quirement since they are position-independent (Burges). We thus demonstrate,
both theoretically and empirically, PRFM models usually lead to non-optimal
item recommendation results due to such a mismatch. Inspired by the success
of LambdaRank, we introduce Lambda Factorization Machines (LambdaFM),
which is particularly intended for optimizing ranking performance for implicit
feedback. We also point out that the original lambda function suffers from the is-
sue of expensive computational complexity in such settings due to a large amount
of unobserved feedback. Hence, instead of directly adopting the original lambda
strategy, we create three effective negative sampling (NS) based lambda surro-
gates by conducting a theoretical analysis for lambda from the top-N optimization
perspective. Further, we prove that the proposed lambda samplers are generic

38

3.1 Introduction

and applicable to a large set of pairwise ranking loss functions. Extensive exper-
iments demonstrate that LambdaFM significantly outperforms state-of-the-art
algorithms on three real-world datasets in terms of four popular ranking mea-
sures.

This chapter is mainly based on our previous work “LambdaFM: Learning
Optimal Ranking with Factorization Machines Using Lambda Surrogates” (Yuan
et al., 2016b) published in Conference on Information and Knowledge Manage-
ment (CIKM) 2016 with DOI: http://dx.doi.org/10.1145/2983323.2983758.

3.1 Introduction

Content/context-based recommendation is very prevalent in real-world recom-
mender systems. Thus, we target at solving the problem in this setting. To
leverage the content which users or items are associated with, several effective
models have been proposed, among which Factorization Machines (FM) (Rendle,
2012) gain much popularity due to its elegant theory in seamless integration of
sparse content and context information. As mentioned before, in the whole thesis,
we focus on recommendation problems from implicit feedback. To address both
content/context and implicit feedback scenarios, the ranking based FM algorithm
by combining pairwise learning-to-rank (LtR) techniques (PRFM (Qiang et al.,
2013)) has been investigated.

To our best knowledge, PRFM works much better than the original pointwise
FM in the settings of implicit feedback with the same sampling strategy. Never-
theless, it is reasonable to argue that pairwise learning is position-independent:
an incorrect pairwise-wise ordering at the bottom of the list impacts the score
just as much as that at the top of the list (McFee and Lanckriet, 2010). How-
ever, for top-N item recommendation task, the learning quality is highly position-
dependent: the higher accuracy at the top of the list is more important to the
recommendation quality than that at the low-position items, reflected in the rank
biased metrics such as Normalized Discounted Cumulative Gain (NDCG) (Pan
and Chen, 2013) and Mean Reciprocal Rank (MRR) (Shi et al., 2012b). Hence,
pairwise loss might still be a suboptimal scheme for ranking tasks. In this chapter,
we conduct detailed analysis from the top-N optimization perspective, and shed

39

3.2 Related Work

light on how PRFM results in non-optimal ranking in the setting of implicit feed-
back. Besides the theoretical analysis, we also provide the experimental results
to reveal the inconsistency between the pairwise classification evaluation metric
and standard ranking metrics (e.g., AUC (Rendle et al., 2009b) vs. MRR).

Inheriting the idea of differentiating pairs in LambdaRank (Quoc and Le,
2007), we propose LambdaFM, an advanced variant of PRFM by directly opti-
mizing the rank biased metrics. We point out that the original lambda function
(Quoc and Le, 2007) of LambdaRank is computationally intractable for implicit
recommendation task due to a large number of unobserved feedback. To tackle
such a problem, we implement three alternative surrogates (i.e., samplers) based
on the analysis of the lambda function. Furthermore, we claim that the pro-
posed lambda surrogates are more general and can be applied to a large class
of pairwise loss functions. By applying these loss functions, a family of PRFM
and LambdaFM algorithms have been developed. Finally, we perform thorough
experiments on three real-world datasets and compare LambdaFM with state-of-
the-art approaches. Our results demonstrate that LambdaFM noticeably outper-
form a number of baseline models in terms of four standard ranking evaluation
metrics.

In the chapter, we will show that the performance difference of PRFM and
LambdaFM is because of the different sampling strategies (uniform sampler vs.
non-uniform sampler). Both our theoretical analysis and experiments will support
our thesis statements (1) and (2).

3.2 Related Work

The approach presented in this work is rooted in research areas of content/context-
based recommendation and Learning-to-Rank (LtR) techniques. Hence, we dis-
cuss the most relevant previous contribution in each of the two areas and position
our work with respect to them.

3.2.1 Content/Context-based Recommender Systems

Researchers have devoted a lot of efforts to content/context-based (or feature-
based) recommender systems. Early work performed pre- or post-filtering of the

40

3.2 Related Work

input data to make standard methods content/context-aware, and thus ignoring
the potential interactions between different feature variables. Recent research
mostly focuses on integrating the user context (or item content) features into
factorization models. Two lines of contributions have been presented to date, one
based on tensor factorization (TF) (Karatzoglou et al., 2010) and the other on
Factorization Machines (FM) (Rendle, 2012) as well as its variant SVDFeature
(Chen et al., 2012). The type of feature by TF is usually limited to categorical
variables. By contrast, the interactions of context by FM are more general, i.e.,
not limited to categorical ones. On the other hand, both approaches are originally
designed for the rating prediction task (Cremonesi et al., 2010), which are based
on the explicit user feedback. However, as mentioned before, in most real-world
scenarios only implicit user behavior is observed and there is no explicit rating
(Rendle and Freudenthaler, 2014; Rendle et al., 2009b). As mentioned before, the
item recommendation from implicit feedback is typically formulated as a ranking
problem since users care more about items that are ranked at the top position
of the item list. Hence, methods by combining LtR and feature-based models
(e.g., TF and FM) provide a series of solutions (Shi et al., 2014, 2012a). Detailed
literature regarding learning-to-rank is discussed in the next section.

3.2.2 Learning-to-Rank

Learning-to-Rank (LtR) techniques have been attracting broad attention due to
its effectiveness and importance in machine learning community. There are two
major approaches in the field of LtR, namely pairwise (Burges et al., 2005; Rendle
et al., 2009b; Freund et al., 2003) and listwise approaches (Shi et al., 2012b,a). In
the pairwise settings, LtR problem is approximated by a classification problem,
and thus existing methods in classification can be directly applied. For example,
PRFM (Rendle, 2012) applies FM as the ranking function to model the pair-
wise interactions of features, and optimizes FM by maximizing the AUC metric.
However, it has been pointed out in previous Information Retrieval (IR) litera-
ture that pairwise approaches are designed to minimize the classification errors
of objective pairs, rather than errors in ranking of items (Liu et al., 2009). In
other words, the pairwise loss does not inversely correlate with the ranking mea-
sures such as Normalized Discounted Cumulative Gain (NDCG) and MAP. By

41

3.2 Related Work

contrast, listwise approaches solve this problem in a more elegant way where the
models are formalized to directly optimize a specific list-level ranking metric. For
example, TFMAP (Shi et al., 2012a) optimizes a TF model by maximizing the
Mean Average Precision (MAP) metric; similar work by CARS2 (Shi et al., 2014)
studied to use the same listwise loss functions to learn a novel TF model; How-
ever, an obvious drawback of the listwise method is that it is generally non-trivial
to directly optimize the ranking performance measures because they are either
non-continuous or indifferentiable, e.g., NDCG, MAP and MRR. As a result, the
listwise loss functions have to rely on the design of approximations or bounds
of a differentiable loss surrogate, which easily leads to sub-optimal results (Shi
et al., 2014). The other way is to add listwise information into pairwise learning.
The most typical work is LambdaRank (Quoc and Le, 2007), where the change
of NDCG of the ranking list if switching the item pair is incorporated into the
pairwise loss in order to reshape the model by emphasizing its learning over the
item pairs leading to large NCDG drop.

It is worth noticing that previous LtR models (e.g., Ranking SVM (Herbrich
et al., 1999), RankBoost (Freund et al., 2003), RankNet (Burges et al., 2005),
ListNet (Cao et al., 2007), LambdaRank (Quoc and Le, 2007)) were originally
proposed for IR tasks with dense features, which might not be directly applied in
recommender systems (RS) with huge sparse context feature space. Besides, RS
target at personalization, which means each user should attain one set of param-
eters for personalized ranking, whereas the conventional LtR normally learns one
set of global parameters (Cao et al., 2007), i.e., non-personalization. Hence, in this
work we build our contributions on the state-of-the-art algorithm of PRFM. By a
detailed analysis for the ranking performance of PRFM, we present LambdaFM
motivated by the idea of LambdaRank. However, computing such a lambda
poses an efficiency challenge in learning the model. By analyzing the function
of lambda, we present three alternative surrogate strategies that are capable of
achieving equivalent performance.

42

3.3 Preliminaries

3.3 Preliminaries

In this section, we first recapitulate the idea and implementation of PRFM (Qiang
et al., 2013) based on the pairwise cross entropy loss and uniform negative sam-
pling. Then we show that PRFM suffers from a suboptimal ranking for top-N
item recommendations. Motivated by this, we devise the LambdaFM algorithm
by applying the idea from LambdaRank.

3.3.1 Pairwise Ranking Factorization Machines

In the context of recommendation, let C be the whole set of contexts (including
user and user-related features, aka user-field) and I the whole set of items (in-
cluding item and item-related features, aka item-field). Assume that the learning
algorithm is given a set of pairs of items (i, j) ∈ I for context c ∈ C, together with
the desired target value P c

ij for the posterior probability, and let P c

ij ∈ {0, 0.5, 1}
be defined as 1 if i is more relevant than j given c, 0 if item i is less relevant, and
0.5 if they have the same relevance. The cross entropy (CE) (Burges et al., 2005)
loss is defined as

L =
∑
c∈C

∑
i∈I

∑
j∈I

−P c

ij logP c
ij −

(
1− P c

ij

)
log
(
1− P c

ij

)
(3.1)

where P c
ij is the modeled probability

P c
ij =

1

1 + exp(−σ
(
ŷ(xi)− ŷ(xj)

)
)

(3.2)

where σ determines the shape of sigmoid with 1 as default value, x ∈ Rn denotes
the input vector, and ŷ(x) is the ranking score computed by 2-order FM (i.e.,
Eq. 2.9 in Chapter 2):

ŷ(x) = w0 +
n∑
d=1

wdxd +
1

2

k∑
f=1

((
n∑
d=1

vd,fxd)
2 −

n∑
d=1

v2
d,fx

2
d) (3.3)

where n is the number of context variables, k is a hyper-parameter that denotes
the dimensionality of latent factors, and w0, wd, vd,f are the model parameters to
be estimated, i.e., Θ = {w0, w1, ..., wn, v1,1, ..., vn,k}={w0,w,V }. As previously
mentioned, we are focusing on the implicit recommendation problem. To simplify
Eq. (3.1), we formalize implicit feedback training data for context c as

Dc = {〈i, j〉c|i ∈ Ic ∧ j ∈ I\Ic} (3.4)

43

3.3 Preliminaries

where Ic represents the set of positive context-item pairs, i and j are an observed
and unobserved item for c, respectively. Thus, we have P c

ij=1. Now the CE loss
function and gradient for each 〈i, j〉c pair in our settings becomes

L(〈i, j〉c) = log(1 + exp(−σ(ŷ(xi)− ŷ(xj))) (3.5)

∂L(〈i, j〉c)
∂θ

= λi,j(
∂ŷ(xi)
∂θ

− ∂ŷ(xj)
∂θ

) (3.6)

where λi,j is the learning weight1 for 〈i, j〉c pair and is defined as

λi,j =
∂L(〈i, j〉c)

∂(ŷ(xi)− ŷ(xj))
=− σ

1 + exp(σ(ŷ(xi)− ŷ(xj)))
(3.7)

According to the property of Multilinearity (Rendle, 2012), the gradient of Eq. (3.3)
can be derived as

∂ŷ(xi)
∂θ

=

xid if θ is wd

xid
∑n

l=1 vl,fx
i
l − vd,fxid

2 if θ is vd,f
(3.8)

By combining Eqs. (3.5)-(3.8), we obtain

wd ← wd − η(λi,j(x
i
d − x

j
d) + γwdwd) (3.9)

vd,f ← vd,f − η(λi,j(
n∑
l=1

vl,f (x
i
dx

i
l − x

j
dx

j
l)− vd,f (x

i
d

2 − xjd
2
)) + γvd,fvd,f)

where γθ (i.e., γwd , γvd,f) is a hyper-parameter for the L2 regularization. To
handle the large number of unobserved feedback (i.e., I\Ic), the common practice
is to apply Stochastic Gradient Descent (SGD) with negative sampling (Rendle
et al., 2009b). Finally, the pseudo algorithm of PRFM in the settings of implicit
feedback is shown in Algorithm 1, where Line 7 denotes negative sampling with
the uniform item distribution.

3.3.2 Lambda Motivation

Top-N item recommendation is often referred to as a ranking task, where rank-
ing measures like Normalized Discounted Cumulative Gain (NDCG) are widely
adopted to evaluate the recommendation accuracy. However, it has been pointed
out in previous IR literature (e.g., Quoc and Le (2007)) that pairwise loss func-
tions might not match well with these measures. For easy reading, we start to
state the problem by an intuitive example in the form of implicit feedback.

1λi,j can be read as how much influence 〈i, j〉c has for updating Θ.

44

3.3 Preliminaries

Algorithm 1 Ranking FM Learning
1: Input: Training dataset, regularization parameters γθ, learning rate η
2: Output: Parameters Θ = (w,V)
3: Initialize Θ: w← (0, ..., 0); V ∼ N (0, 0.1);
4: repeat
5: Uniformly draw c from C ;
6: Uniformly draw i from Ic ;
7: Uniformly draw j from I\Ic ;
8: for d ∈ {1, ..., n} ∧ xd 6= 0 do
9: Update wd

10: end for
11: for f ∈ {1, ..., k} do
12: for d ∈ {1, ..., n} ∧ xd 6= 0 do
13: Update vd,f
14: end for
15: end for
16: until convergence
17: return Θ

Figure 3.1 is a schematic that illustrates the relations of pairwise loss and
NDCG. By comparison of (b) and (c), we observe two mismatches between them.
First, the pairwise errors decrease from eight (b) to seven (c), along with the
value of NDCG decreasing from 0.790 to 0.511. However, an ideal recommender
model is supposed to increase the NDCG value with the drop of pairwise errors.
Second, in (c), the arrows denote the next optimization direction and strength,
and thus can be regarded as the gradients of PRFM. Although both arrows reduce
the same amount of pairwise errors (i.e., three), the red dashed arrows lead to
more gains as desired. This is because the new NDCGs, after the optimization,
are 0.624 and 0.832 by the black solid and red dashed arrows, respectively.

According to the above counterexamples, we clearly see that the pairwise loss
function used in the optimization process is not a desired one as reducing its
value does not necessarily increase the ranking performance. This means, PRFM
might still be a suboptimal scheme for top-N recommendations. This motivates
us to study whether PRFM can be improved by concentrating on maximizing the
ranking measures.

To overcome the above challenge, lambda-based methods (Quoc and Le, 2007)
in the field of IR have been proposed by directly optimizing the ranking biased

45

3.3 Preliminaries

Figure 3.1: A set of items ordered under a given context (e.g., a user) using a
binary relevance measure. The blue bars represent relevant items for the context,
while the light gray bars are those not relevant. (a) is the ideal ranking; (b) is a
ranking with eight pairwise errors; (c) and (d) are a ranking with seven pairwise
errors by moving the top items of (b) down two rank levels, and the bottom
preferred items up three. The two arrows (black solid and red dashed) of (c)
denote two ways to minimize the pairwise errors. (d) shows the change in NDCG
by swapping the orders of two items (e.g., item 7 and item 1).

performance measures. Inheriting the idea of LambdaRank, we design a new
recommendation model named Lambda Factorization Machines (LambdaFM),
an extended version of PRFM for solving top-N context-based recommendations
in implicit feedback domains. Following this idea, we can design a similar lambda
function as f(λi,j, ζc), where ζc is the current item ranking list for context c. With
NDCG as target, f(λi,j, ζc) is given

f(λi,j , ζc) = λi,j |4NDCGij | (3.10)

where4NDCGij is the NDCG difference of the ranking list under a given context
if the positions (ranks) of items i, j get switched. LambdaFM can be implemented
by replacing λi,j with f(λi,j, ζc) in Eqs. (3.9).

We find that the above implementation is reasonable for multi-label learning
tasks in typical IR tasks, but not applicable into implicit feedback settings. This
is because to calculate 4NDCGij it requires to compute scores of all items to
obtain the rankings of item i and j. For the traditional LtR, the candidate
URLs returned for a given query in training datasets have usually been limited

46

3.4 Lambda Strategies

to a small size. However, for recommendation, since there is no query at all, all
unobserved (non-positive) items should be regarded as candidates, which leads
to a very large size of candidates (Zhang et al., 2013). Thus the complexity to
calculate each training pair in implicit feedback settings becomes O(|I| · Tpred),
where Tpred is the time for predicting a score by Eq. (3.3). Note that since the
NDCG value is determined by the parameters of FM which however are updated
in each SGD step. This means the whole ranking orders are totally changed after
each SGD update. In other words, it is also meaningless to calculate the NDCG
value in advance. That is, the original lambda function devised for LambdaRank
is impractical for our settings.

3.4 Lambda Strategies

To handle the above problem, we need to revisit Eqs. (3.10), from which4NDCGij

can be interpreted as a weight function that it rewards a training pair by raising
the learning weight (i.e., λi,j) if the difference of NDCG is larger after swapping
the two items, otherwise it penalizes the training pair by shrinking the learning
weight. Suppose an ideal lambda function f(λi,j, ζc) for each training pair 〈i, j〉c
is given with the current item ranking list ζc, if we design a scheme that generates
the training item pair 〈i, j〉c with the probability proportional to f(λi,j, ζc)/λi,j

(just like 4NDCGij in Eqs. (3.10)), then we are able to construct an almost
equivalent training model. In other words, a higher proportion of item pairs
should be drawn according to the probability distribution pj ∝ f(λi,j, ζc)/λi,j if
they have a larger 4NDCG by swapping.

On the other hand, we observe that item pairs with a larger 4NDCG con-
tribute more to the desired loss and lead to a larger NDCG value. In the follow-
ing, we refer to a training pair 〈i, j〉c as an informative item pair, if 4NDCGij

is larger after swapping i and j than another pair 〈i, j′〉. The unobserved item j

is called a good or informative item. This leads to two research questions arise:
(1) how to judge which item pairs are more informative? and (2) how to pick up
informative items? Figure 3.1 (d) gives an example of which item pairs should
have a higher weight. Obviously, we observe that the quantity of 4NDCG71 is
larger than that of 4NDCG75. This indicates 4NDCGij is likely to be larger

47

3.4 Lambda Strategies

(a) Lastfm (b) Yahoo

Figure 3.2: Item popularity on the Lastfm (short for Last.fm) and Yahoo
datasets plotted in the linear scale.

if unobserved (e.g., unselected) items have a higher rank (or a relatively higher
score by Eq. (3.3)). This is intuitively correct as the high ranked non-positive
items hurt the ranking performance (users’ feelings) more than the low ranked
ones. The other side of the intuition is that low ranked positive items contribute
similarly as high ranked non-positive items during the training process, which
would be provided with more details later.

In the following, we introduce three intuitive lambda-motivated sampling
methods (i.e., lambda surrogates) for addressing the two research questions and
refer to PRFM with suggested lambda surrogates as LambdaFM (LFM for short
in some places). The above discussions and the following solutions are consistent
with our statement (1) and statement (2).

3.4.1 Static and Context-independent Sampler

We believe that a popular item j ∈ I\Ic is supposed to be a reasonable substitute
for a high ranked non-positive item, i.e., the so-called informative item. The
reason is intuitive as an ideal learning algorithm is expected to restore the pairwise
ordering relations and rank most positive items with larger ranking scores than
non-positive ones. As we know, the more popular an item is, the more times it
acts as a positive one. Besides, popular items are more likely to be suggested
by a recommender in general, and thus they have higher chances to be positive
items. That is, the observation that a context is more relevant to an item over

48

3.4 Lambda Strategies

a popular one provides more information to capture the user’s potential interest
than that he/she prefers an item over a very unpopular one. Thus, it is reasonable
to assign a higher weight to non-positive items with high popularity, or sampling
such items with a higher probability.

In fact, it has been recognized that item popularity distribution in most real-
world recommendation datasets has a heavy tail (Park and Tuzhilin, 2008; Lu
et al., 2012) (also see Figure 3.2), following an approximate power-law or ex-
ponential distribution. Accordingly, most non-positive items drawn by uniform
sampling in Algorithm 1 are unpopular due to the long tail distribution, and
thus contribute less to the desired loss function. Based on the analysis, it is rea-
sonable to present a popularity-aware sampler to replace the uniform one before
performing each SGD. Let pj denote the sampling distribution for item j. In
this work, we draw unobserved items with the probability proportional to the
empirical popularity distribution, e.g., an exponential distribution.

pj ∝ exp(−r(j) + 1

|I| × ρ
), ρ ∈ (0, 1] (3.11)

where r(j) represents the rank of item j among all items I according to the
overall popularity, ρ is the parameter of the distribution. Therefore, Line 6
in Algorithm 1 can be directly replaced as the above sampler, i.e., Eq. (3.11).
Hereafter, we denote PRFM with the static popularity-aware sampler as LFM-S.
Interestingly, in Rendle and Freudenthaler (2014), by analyzing from the gradi-
ent vanishing perspective, the authors found that the popularity-based sampler
hurts the recommendation accuracy although it converges much faster. While
in our evaluation we empirically found that BPR with the popularity sampler
can significantly improve the basic uniform sampler (Yuan et al., 2016b). The
reason may be because in Rendle and Freudenthaler (2014) they oversampled
only a small portion of very popular unobserved items based on the empirical
distribution while most relatively popular items are missing.

The proposed sampler has three important properties:

• Static. The sampling procedure is static, i.e., the distribution does not
change during the training process.

• Context-Invariant. The item popularity is independent of context informa-
tion according to Eq. (3.11).

49

3.4 Lambda Strategies

Algorithm 2 Rank-Aware Dynamic Sampling
1: Require: Unobserved item set I\Ic, scoring function ŷ(·), parameter m, ρ
2: Draw sample j1,...,jm uniformly from I\Ic
3: Compute ŷ(xj1),...,ŷ(xjm)
4: Sort j1,...,jm by descending order, i.e., r(jm) ∝ 1

ŷ(xjm)

5: Return one item from the sorted list with the exponential distribution pj ∝
exp(−(r(j) + 1)/(m× ρ)).

• Efficient. The sampling strategy does not increase the computational com-
plexity since the popularity distribution is static and thus can be calculated
in advance.

3.4.2 Dynamic and Context-aware Sampler

The second sampler is a dynamic one which is able to change the sampling proce-
dure while the model parameters Θ are updated. The main difference of dynamic
sampling is that the item rank is computed by their scores instead of global pop-
ularity. As it is computationally expensive to calculate all item scores in the item
list given a context, which is different from the static item popularity calculated
in advance, we first perform a uniform sampling to obtainm candidates. Then we
calculate the candidate scores and sample the candidates also by an exponential
distribution. As the first sampling is uniform, the sampling probability density
for each item is equivalent with that from the original (costy) global sampling. A
straightforward algorithm can be implemented by Algorithm 2. We denote PRFM
with the dynamic sampler as LFM-D. It can be seen this sampling procedure is
dynamic and context-aware.

• The sampler selects non-positive items dynamically according to the current
item ranks which are likely to be different at each update.

• The item rank is computed by the FM function (i.e., Eq. (3.3)), which is
clearly context-aware.

• The complexity for parameter update of each training pair is O(mTpred

(Line 3)+m logm (Line 4)), where the number of sampling items m can be
set to a small value (e.g., m=10, 20, 50). Thus introducing the dynamic
sampler will not increase the time complexity much.

50

3.4 Lambda Strategies

3.4.3 Rank-aware Weighted Approximation

The above two surrogates are essentially based on non-positive item sampling
techniques, the core idea is to push non-positive items with higher ranks down
from the top positions. Based on the same intuition, an equivalent way is to pull
positive items with lower ranks up from the bottom positions. That is, we have
to place less emphasis on the highly ranked positives and more emphasis on the
lowly ranked ones. Specifically, if a positive item is ranked top in the list, then we
use a reweighting term Γ

(
r(i)
)
to assign a smaller weight to the learning weight

λi,j such that it will not cost the loss too much. However, if a positive item is
not ranked at top positions, Γ

(
r(i)
)
will assign a larger weight to the gradient,

pushing the positive item to the top.

f(λi,j , ζu) = Γ
(
r(i)
)
λi,j (3.12)

By considering maximizing objectives e.g., reciprocal rank, we define Γ
(
r(i)
)
as

Γ
(
r(i)
)

=
1

Γ
(
I
) r(i)∑
r=0

1

r + 1
(3.13)

where Γ
(
I
)
is the normalization term calculated by the theoretically lowest po-

sition of a positive item, i.e.,

Γ
(
I
)

=
∑
r∈I

1

r + 1
(3.14)

However, the same issue occurs again, i.e., the rank of the positive item i is
unknown without computing the scores of all items. In contrast with non-positive
item sampling methods, sampling positives is clearly useless as there are only a
small fraction of positive items (i.e., |Ic|), and thus all of them should be utilized
to alleviate the sparsity. Interestingly, we observe that it is possible to compute
the approximate rank of positive item i by sampling one incorrectly-ranked item.
More specifically, given a 〈c, i〉 pair, we repeatedly draw an item from I until
we obtain an incorrectly-ranked item j such that ŷ(xi) − ŷ(xj) ≤ ε and P c

ij=1,
where ε is a positive margin value1. Let T denote the size of sampling trials
before obtaining such an item. Apparently, the sampling process corresponds to

1We hypothesize that item j is ranked higher than i for context c only if ŷ(xi) − ŷ(xj) ≤ ε, the default
value of ε is set to 1.

51

3.4 Lambda Strategies

a geometric distribution with parameter p = r(i)
|I|−1

. Since the number of sampling
trials can be regarded as the expectation of parameter p, we have T ≈ d1

p
e =

d |I|−1
r(i)
e, where d·e is the ceiling function1. Finally, by using the estimation, we

rewrite the gradient

∂L(〈i, j〉u)

∂θ
=

∑d |I|−1
T
e

r=0
1
r+1

Γ
(
I
) λi,j(

∂ŷ(xi)
∂θ

− ∂ŷ(xj)
∂θ

) (3.15)

We denote the proposed algorithm based weighted approximation as LFM-W
in Algorithm 3. In this algorithm, we iterate through all positive items i ∈ Ic
for each context and update the model parameters w, V until the procedure
converges. In each iteration, given a context-item pair, the sampling process is
first performed so as to estimate violating condition and obtain a desired item j.
Note that item j is not limited to a non-positive item, since it can also be drawn
from the positive collection Ic with a lower preference than i. Once j is chosen,
we update the model parameters by applying the SGD method.

We are interested in investigating whether the weight approximation yields the
right contribution for the desired ranking loss. Based on Eq. (3.15), it is easy to
achieve a potential loss induced by the violation of 〈i, j〉c pair using back-stepping
approach

L(〈i, j〉c)=

∑d |I|−1
T
e

r=0
1
r+1

Γ(I)
log(1 + exp(−σ(ŷ(xi)− ŷ(xj)))) (3.16)

To simplify the function, we first omit the denominator term since it is a constant
value, then we replace the CE loss with the 0/1 loss function.

∂L(〈i, j〉c)
∂θ

=

r(i)∑
r=0

1

r + 1
I
[
ŷ(xi)− ŷ(xj)

]
(3.17)

where I[·] is the indicator function, I[h] = 1 when h is true, and 0 otherwise.
Thus, we have I [ŷ(xi)− ŷ(xj] = 1 in all the cases because r is smaller than r(i).
Moreover, for each positive item i, there are r(i) items that are ranked higher
than i (i.e., item j), and thus each j has the probability of p = 1

r(i)
to be picked.

1The idea here is inspired by Weston et al. (2011), which was designed to solve the image classification
problem.

52

3.4 Lambda Strategies

Finally, the formulation of the loss for each context c is simplified as1

Lc =
∑
i∈Ic

r(i)∑
r=0

1

r + 1
(3.18)

As previously demonstrated in Section 3.3.2, the difference of pairwise losses
between (b) and (c) in Figure 3.1 is inconsistent with that of NDCG values.
Instead of using standard pairwise loss function, here we also give an intuitive
example to show the merit of our proposed method in reducing loss and improving
the accuracy. We compute the losses based on Eq. (3.18), from which we achieve
the losses of (b) and (c) are 2.93 and 4.43, respectively. This means, a smaller loss
leads to a larger NDCG value, and vice versa. Similarly, we notice that the black
(solid) arrows in (c) after movement lead to a larger loss than the red (dashed)
ones, and in reason, the new NDCG value generated by the black ones is smaller
than that by the red ones. Therefore, the movement direction and strength of
red arrows is the right way to minimize a larger loss, which also demonstrates the
correctness of the proposed lambda strategy. Based on Eq. (3.18), one can draw
similar conclusions using other examples.

Regarding the properties of LFM-W, we observe that the weight approxima-
tion procedure is both dynamic (Line 9-13 of Algorithm 3) and context-aware
(Line 11) during each update, similarly like LFM-D. Moreover, LFM-W is able
to leverage both binary and graded relevance datasets (e.g. URL click numbers,
POI check-ins), whereas LFM-S and LFM-D cannot learn the count information
from positives. In terms of the computational complexity, using the gradient
calculation in Eq. (3.15) can achieve important speedups. The complexity to
compute 4NDCG is O(Tpred|I|) while the complexity with weighted approxima-
tion becomes O(TpredT). Generally, we have T � |I| at the start of the training
and T < |I| when the training is stable. The reason is that at the beginning,
LambdaFM is not well trained and thus it is quick to find an offending item j,
which needs only a very small T , i.e., T � |I|, when the training converges to a
stable state, most positive items are already be ranked correctly, which is also our
expectation, and thus T becomes larger. However, it is unlikely that all positive
items are ranked correctly, so we still have T < |I|.

1Please note that Lc is non-continuous and indifferentiable, which means it is hard to be directly optimized
with this form.

53

3.4 Lambda Strategies

Algorithm 3 LFM-W Learning
1: Input: Training dataset, regularization parameters γ, learning rate η
2: Output: Parameters Θ = (w,V)
3: Initialize Θ: w← (0, ..., 0); V ∼ N (0, 0.1);
4: repeat
5: Uniformly draw c from C
6: Uniformly draw i from Ic
7: Calculate ŷ(xi)
8: Set T=0
9: do

10: Uniformly draw j from I
11: Calculate ŷ(xj)
12: T+=1
13: while

(
ŷ(xi)− ŷ(xj) > ε ‖ P cij 6= 1

)
∧
(
T < |I| − 1

)
14: if ŷ(xi)− ŷ(xj) ≤ ε ∧ P cij = 1 then
15: Calculate λi,j ,Γ

(
I
)

according to Eqs. (3.7) and (3.14)
16: for d ∈ {1, ..., n} ∧ xd 6= 0 do
17: Update wd:

18: wd ← wd −η(λi,j(x
i
d−x

j
d)

∑d |I|−1
T
e

r=0
1
r+1

Γ(I) − γwdwd)
19: end for
20: for f ∈ {1, ..., k} do
21: for d ∈ {1, ..., n} ∧ xd 6= 0 do
22: Update vd,f :
23: vd,f ← vd,f− η(λi,j(

∑n
l=1 vl,f (xidx

i
l − x

j
dx

j
l)

−vd,f (xid
2 − xjd

2
))

∑d |I|−1
T
e

r=0
1
r+1

Γ
(
I
) − γvd,f vd,f)

24: end for
25: end for
26: end if
27: until convergence
28: return Θ

54

3.5 Lambda with Alternative Losses

3.5 Lambda with Alternative Losses

From Section 3.3.1, one may observe that the original lambda function was a
specific proposal for the CE loss function used in RankNet (Burges et al., 2005).
There exists a large class of pairwise loss functions in IR literature. The well-
known pairwise loss functions, for example, can be margin ranking criterion,
fidelity loss, exponential loss, and modified Huber loss, which are used in Ranking
SVM (Herbrich et al., 1999), Frank (Tsai et al., 2007), RankBoost (Freund et al.,
2003), quadratically smoothed SVM (Zhang, 2004), respectively. Motivated by
the design ideas of these famous algorithms, we build a family of LambdaFM
variants based on these loss functions and verify the generic properties of our
lambda surrogates.

Margin ranking criterion (MRC):

L =
∑
c∈C

∑
i∈Ic

∑
j∈I\Ic

max(0, 1− (ŷ(xi)− ŷ(xj))) (3.19)

MRC (aka, Hinge loss) assigns each positive-negative (non-positive) item pair a
cost if the score of non-positive item is larger or within a margin of 1 from the
positive score. Optimizing this loss is equivalent to maximizing the area under the
ROC curve (AUC). Since MRC is non-differentiable, we optimize its subgradient
as follows

λi,j =

{
−1 if ŷ(xi)− ŷ(xj) < 1
0 if ŷ(xi)− ŷ(xj) ≥ 1

(3.20)

As is known, the pairwise violations are independent of their positions in the
ranking list (Hong et al., 2013). For this reason, MRC might not optimize top-N
very accurately.

Fidelity loss (FL): This loss is introduced by Tsai et al. (2007) and has been
applied in Information Retrieval (IR) task and yielded superior performance. The
original function regarding the loss of pairs is defined as

L =
∑
c∈C

∑
i∈I

∑
j∈I

(1−
√
P ij · Pi,j −

√
(1− P ij) · (1− Pi,j)) (3.21)

where P ij and Pij share the same meanings with the CE loss in Eq. (3.1). Ac-
cording to the antisymmetry of pairwise ordering scheme (Rendle et al., 2009b),

55

3.6 Experiments

we simplify the FL in implicit feedback settings as follows

L =
∑
c∈C

∑
i∈Ic

∑
j∈I\Ic

(1− 1√
1 + exp(−ŷ(xi) + ŷ(xj))

) (3.22)

In contrast with other losses (e.g., the CE and exponential losses), the FL of a
pair is bounded between 0 and 1, which means the model trained by it is more
robust against the influence of hard pairs. However, we argue that (1) FL is
non-convex, which makes it difficult to optimize; (2) adding bound may cause
insufficient penalties of informative pairs.

Modified Huber loss (MHL):

L =
∑
c∈C

∑
i∈Ic

∑
j∈I\Ic

1

2γ
max(0, 1− (ŷ(xi)− ŷ(xj)))2 (3.23)

where γ is a positive constant and is set to 2 for evaluation. MHL is quadratically
smoothed variant of MRC and proposed for linear prediction problems by Zhang
(2004).

It is worth noting that both Fidelity and Huber loss functions have not been
investigated yet in the context of recommendation. Besides, to the best of our
knowledge, PRFM built on these two loss functions are novel. On the other hand,
we find that exponential loss function is aggressive and seriously biased by hard
pairs, which usually result in worse performance during the experiment. Thus
the trial of PRFM with exponential loss have been omitted.

3.6 Experiments

We conduct experiments on the several real-world datasets to verify the effective-
ness of LambdaFM (i.e., the three lambda-based negative samplers) in various
settings.

3.6.1 Experimental Setup
3.6.1.1 Datasets

We use three publicly accessible Collaborative Filtering (CF) datasets for our
experiments: Yelp1 (context-venue pairs), Lastfm2 (context-music-artist triples)

1https://www.yelp.co.uk/dataset_challenge
2http://www.dtic.upf.edu/~ocelma/MusicRecommendationDataset/lastfm-1K.html

56

https://www.yelp.co.uk/dataset_challenge
http://www.dtic.upf.edu/~ocelma/MusicRecommendationDataset/lastfm-1K.html

3.6 Experiments

Table 3.1: Basic statistics of datasets. Each entry indicates a context-item pair

Dataset Context Items Artists Albums Entries
Yelp 10827 23115 - - 333338

Lastfm 983 60000 25147 - 246853
Yahoo 2450 124346 9040 19851 911466

Table 3.2: Performance comparison on NDCG, MRR and AUC. For each mea-
sure, the best result is indicated in bold.

Dataset Metrics MP FM BPR PRFM LFM-S LFM-D LFM-W

Yelp NDCG 0.1802 0.2130 0.2186 0.2186 0.2218 0.2232 0.2191
MRR 0.0451 0.0718 0.0860 0.0852 0.0950 0.0997 0.0977
AUC 0.8323 0.8981 0.9043 0.9044 0.8876 0.8787 0.874

Lastfm NDCG 0.3452 0.3832 0.3830 0.3944 0.4095 0.4175 0.4191
MRR 0.2051 0.2182 0.2588 0.2856 0.3433 0.3514 0.3914
AUC 0.8506 0.9161 0.9055 0.9209 0.9145 0.9075 0.8949

Yahoo NDCG 0.3109 0.3682 0.3478 0.3720 0.3791 0.3993 0.4016
MRR 0.1252 0.1942 0.1909 0.2211 0.2467 0.2857 0.3004
AUC 0.8425 0.9313 0.8720 0.9357 0.9256 0.9340 0.9273

and Yahoo music1 (context-music-artist-album tuples). To speed up the experi-
ments, we randomly sampling a subset of context from the Yahoo datasets, and a
subset of items from the item pool of the Lastfm dataset. On the Yelp dataset, we
extract data from Phoenix and follow the common practice (Rendle et al., 2009b)
to filter out contexts with less than 10 interactions. The reason is because the
original Yelp dataset is much sparser than Lastfm and Yahoo datasets2, which
makes it difficult to evaluate recommendation algorithms (e.g., over half users
have only one entry.). The statistics of the datasets after preprocessing are sum-
marized in Table 4.1.

3.6.1.2 Evaluation Metrics

To illustrate the recommendation quality of LambdaFM, we adopt four standard
ranking metrics: Precision@N and Recall@N (denoted by Pre@N and Rec@N re-
spectively), Normalized Discounted Cumulative Gain (NDCG) (Pan and Chen,
2013; McFee and Lanckriet, 2010) and Mean Reciprocal Rank (MRR) (Shi et al.,

1webscope.sandbox.yahoo.com/catalog.php?datatype=r&did=2
2Cold users of both datasets have been trimmed by official provider.

57

webscope.sandbox.yahoo.com/catalog.php?datatype=r&did=2

3.6 Experiments

2012b), and one (binary) classification metric, i.e., Area Under ROC Curve (AUC).
Note that AUC is position-dependent by taking account of overall ranking per-
formance. For each evaluation metric, we first calculate the performance of each
context from the testing set, and then obtain the average performance over all
contexts. More details about these metrics can be found in Chapter 2. The
formulations of the evaluation metrics are given in Chapter 2.

3.6.1.3 Baseline Methods

We compare LambdaFM with four powerful baseline methods.

• Most Popular (MP): It returns the context (i.e., user in this chapter)
with the top-N most popular items. MP is a commonly used benchmark
for the item recommendation task from implicit feedback.

• Factorization Machines (FM) (Rendle, 2012): FM is designed for the
rating prediction task. We adapt FM for the item recommendation task by
binarizing the rating value. Note that, to conduct a fair comparison, we
also use the uniform sampling to make use of non-positive items.

• Bayesian Personalized Ranking (BPR) (Rendle et al., 2009b): It is
a strong context-free recommendation algorithms specifically designed for
top-N item recommendations based on implicit feedback.

• Pairwise Ranking Factorization Machines (PRFM) (Qiang et al.,
2013): PRFM is a state-of-the-art context-based ranking algorithm, opti-
mized to maximize the AUC metric. In this chapter, we develop several
PRFM1 algorithms by applying various pairwise loss functions introduced
in Section 3.5.

3.6.1.4 Hyper-parameter Settings

To perform stochastic gradient descent (SGD), there are several critical hyper-
parameters.

• Latent dimension k: The effect of latent factors has been well studied by
previous work, e.g., Rendle et al. (2009b). For comparison purposes, the

1PRFM is short for PRFM with the CE loss if not explicitly declared.

58

3.6 Experiments

approaches, e.g., Pan and Chen (2013), are usually to assign a fixed k value
(e.g., k = 30 in our experiments) for all methods based on factorization
models.

• Regularization γθ: LambdaFM has several regularization parameters, in-
cluding γwd , γvd,f , which represent the regularization parameters of latent
factor vectors of wd, vd,f , respectively. We borrow the idea from Rendle
(2012) by grouping them for each factor layer, i.e., γπ = γwd , γξ = γvd,f . We
run LambdaFM with γπ, γξ ∈ {0.5, 0.1, 0.05, 0.01, 0.005} to find the best
performance parameters.

• Distribution coefficient ρ: ρ ∈ (0, 1] is specific for LFM-S and LFM-D,
which is usually tuned according to the data distribution.

3.6.2 Performance Evaluation

All experiments are conducted with the standard 5-fold cross validation. The
average results over 5 folds are reported as the final performance.

3.6.2.1 Accuracy Summary

Table 3.2 and Figure 3.3(a-f) show the performance of all the methods on the three
datasets. Several insightful observations can be made: First, in most cases per-
sonalized models (BPR, PRFM, LambdaFM) noticeably outperform MP, which
is a non-personalized method. This implies, in practice, when there is personal-
ized information present, personalized recommenders are supposed to outperform
non-personalized ones. Particularly, our LambdaFM clearly outperforms all the
counterparts in terms of four ranking metrics. Second, we observe that different
models yield basically consistent recommendation accuracy on different metrics,
except for AUC, which we give more details later. Third, as N increases, values
of Pre@N get lower and values of Rec@N become higher. The trends reveal the
typical behavior of recommender systems: the more items are recommended, the
better the recall but the worse the precision achieved.

Regarding the effectiveness of factorization models, we find that BPR performs
better than FM on the Yelp dataset1, which empirically implies pairwise methods

1Note that it is not comparable on the Lastfm and Yahoo datasets since FM combines other contexts.

59

3.6 Experiments

0.01

0.02

0.03

5 10 20
N

P
re
@
N

MP

FM

BPR

PRFM

LFM-S

LFM-D

LFM-W

(a) P-Yelp

0.10

0.15

0.20

5 10 20
N

P
re
@
N

MP

FM

BPR

PRFM

LFM-S

LFM-D

LFM-W

(b) P-Lastfm

0.06

0.09

0.12

0.15

0.18

5 10 20
N

P
re
@
N

MP

FM

BPR

PRFM

LFM-S

LFM-D

LFM-W

(c) P-Yahoo

0.02

0.04

0.06

0.08

5 10 20
N

R
ec
@
N

MP

FM

BPR

PRFM

LFM-S

LFM-D

LFM-W

(d) R-Yelp

0.02

0.04

0.06

0.08

5 10 20
N

R
ec
@
N

MP

FM

BPR

PRFM

LFM-S

LFM-D

LFM-W

(e) R-Lastfm

0.02

0.04

0.06

5 10 20
N

R
ec
@
N

MP

FM

BPR

PRFM

LFM-S

LFM-D

LFM-W

(f) R-Yahoo

Figure 3.3: Performance comparison w.r.t. top-N values, i.e., Pre@N (P) and
Rec@N (R).

0.01 0.1 0.3 0.5 0.8 1.0

0.02

0.04

0.06

0.08

0.1

r

M
R
R

PRFM
LFM-S
LFM-D
LFM-W

(a) Yelp

0.01 0.1 0.3 0.5 0.8 1.0

0.2

0.3

0.4

r

M
R
R

PRFM
LFM-S
LFM-D
LFM-W

(b) Lastfm

0.01 0.1 0.3 0.5 0.8 1.0

0.05

0.1

0.15

0.2

0.25

0.3

r

M
R
R

PRFM
LFM-S
LFM-D
LFM-W

(c) Yahoo

Figure 3.4: Parameter tuning w.r.t. MRR.

outperform pointwise ones for ranking tasks with the same negative sampling
scheme. The reason is that FM is identical to matrix factorization with only
context-item information. In this case, the main difference of FM and BPR is that
they apply different loss functions, i.e., quadratic and logistic loss, respectively.
This is in accordance with the interesting finding that BPR and PRFM produce
nearly the same results w.r.t. all metrics on Yelp. Furthermore, among all the

60

3.6 Experiments

baseline models, the performance of PRFM is very promising. The reason is
that PRFM, (1) as a ranking-based factorization method, is more appropriate
for handling top-N item recommendation tasks (vs. FM); (2) by applying FM
as scoring function, PRFM estimates more accurate ordering relations than BPR
due to auxiliary contextual variables.

LambdaFM vs. PRFM: We observe that in Figure 3.3 and Table 3.2 our
LambdaFM (including LFM-S, LFM-D and LFM-W) consistently outperforms
the state-of-the-art method PRFM in terms of four ranking metrics. In particular,
the improvements on Lastfm and Yahoo datasets w.r.t. NDCG and MRR, are
more than 6% and 35%, respectively. Similar improvements w.r.t. Pre@N and
Rec@N metrics can be observed from Figure 3.3. For clarity, we only use MRR for
the following discussion since the performance trend on all other ranking metrics
is highly consistent. Besides, we observe that LFM underperforms PRFM in
terms of AUC. The results validate our previous analysis, namely, LambdaFM is
trained to optimize ranking measures while PRFM aims to maximize the AUC
metric. This indicates that pairwise ranking models with the uniform negative
sampling strategy, such as BPR and PRFM, may not be good approximators of
the ranking biased metrics and such a mismatch empirically leads to non-optimal
ranking. From the sampling perspective, the uniform sampler used in PRFM
may spends too many efforts on training uninformative examples and learns less
useful information than the lambda-based negative sampling strategies.

3.6.2.2 Effect of Lambda Surrogates/Samplers

In this subsection, we study the effect of lambda surrogates (i.e., the sampling
distribution) on the recommendation performance. For LFM-S, we directly tune
the value of ρ; for LFM-D, we fix the number of sampling units m to a constant,
e.g., m = 10, and then tune the value of ρ ∈ {0.01, 0.1, 0.3, 0.5, 0.8, 1.0}; and
for LFM-W the only parameter ε is fixed at 1 for all three datasets in this work.
Figure 3.4 depicts the performance changes by tuning ρ. First, we see LFM-W
performs noticeably better than PRFM, and by choosing a suitable ρ (e.g., 0.3
for LFM-S and 0.1 for LFM-D), both LFM-D and LFM-S also perform largely
better than PRFM. This indicates the three suggested lambda-based samplers
work effectively for handling the mismatch drawback between PRFM and ranking

61

3.6 Experiments

measures. Second, LFM-S produces best accuracy when setting ρ to 0.3 on all
datasets but the performance experiences a significant decrease when setting ρ
to 0.1. The reason is that the SGD learner will make more gradient steps on
popular items due to the oversampling when ρ is set too small according to
Eq. (3.11). In this case, most less popular items will not be picked for training,
and thus the model is under-trained. This is why in Rendle and Freudenthaler
(2014), the authors claimed that popularity-based sampler underperforms the
uniform sampler. By contrast, the performance of LFM-D has not dropped on
the Yahoo dataset even when ρ is set to 0.01 (which means picking the top from
m randomly selected items, see Algorithm 2). This implies that the performance
may be further improved by setting a larger m. Third, the results indicate that
LFM-D and LFM-W outperform LFM-S on Lastfm and Yahoo datasets1. This is
because the static sampling method ignores the fact that the estimated ranking
of a non-positive item j changes during learning, i.e., j might be ranked high
in the first step but it is ranked low after several iterations2. Besides, LFM-
S computes the item ranking based on the overall popularity, which does not
reflect the context information. Thus, it gives more benefit by exploiting current
context to perform sampling. The effect of ρ indicates that sampling distribution
of negative items significantly impacts the recommendation accuracy. Clearly,
according to the above discussions, it can be seen that our thesis statement (1)
and statement (2) are well supported.

3.6.2.3 Effect of Adding Features

Finding effective context or item content is not the main focus of the thesis
but it is interesting to see to what extent LambdaFM improves the performance
by adding some additional features. In this section, we study the capability
of LambdaFM in modeling content/context features. Therefore, we conduct a
contrast experimentation and show the results on Figure 3.6(a-b)3, where (c, i)

denotes a context-item (i.e., music) pair and (c, i, a) denotes a context-item-artist
1The superiority is not obvious on the Yelp dataset. This might be due to the reason that the Yelp dataset

has no additional context and the item tail is relatively shorter than that of other datasets.
2In spite of this, non-positive items drawn by popularity sampler are still more informative than those

drawn by uniform sampler.
3ρ is assigned a fixed value for the study of context effect, namely 0.1 and 0.3 for LFM-D and LFM-S,

respectively.

62

3.6 Experiments

0.07

0.08

0.09

0.10

CE FL MHL MRC

M
R
R

PRFM
LFM-S
LFM-D
LFM-W

(a) Yelp

0.25

0.30

0.35

0.40

CE FL MHL MRC
M
R
R

PRFM
LFM-S
LFM-D
LFM-W

(b) Lastfm

0.15

0.20

0.25

0.30

CE FL MHL MRC

M
R
R

PRFM
LFM-S
LFM-D
LFM-W

(c) Yahoo

Figure 3.5: The variants of PRFM and LambdaFM based on various pairwise
loss functions.

0.25

0.30

0.35

0.40

(c,i) (c,i,a)
item feature

M
R

R

PRFM
LFM-S
LFM-D
LFM-W

(a) Lastfm

0.15

0.20

0.25

0.30

(c,i) (c,i,a) (c,i,a,a)
item feature

M
R

R

PRFM
LFM-S
LFM-D
LFM-W

(b) Yahoo

Figure 3.6: Performance comparison w.r.t. MRR with different item features.

triple on both datasets; similarly, (c, i, a, a) represents a context-item-artist-album
quad on Yahoo dataset. First, we observe LambdaFM performs much better
with (c, i, a) tuples than that with (c, i) tuples on both datasets. This result is
consistent with the intuition that a context may like a song if he/she likes another
song by the same artist. Second, as expected, LambdaFM with (c, i, a, a) tuples
performs further better than that with (c, i, a) tuples from Figure 3.6(b). We
draw the conclusion that, by inheriting the advantage of FM, the more effective
feature incorporated, the better LambdaFM performs.

3.6.2.4 Lambda with Alternative Loss Functions

Following the implementations of well-known pairwise LtR approaches introduced
in Section 3.5, we have built a family of PRFM and LambdaFM variants. Fig-

63

3.7 Chapter Summary

ure 3.5 shows the performance of all these variants based on corresponding loss
functions. Based on the results, we observe that by implementing the lambda
surrogates, all variants of LambdaFM outperform PRFM, indicating the generic
properties of these surrogates. Among the three lambda surrogates, the perfor-
mance trends are in accordance with previous analysis, i.e., LFM-W and LFM-D
perform better than LFM-S. Additionally, most recent literature using pairwise
LtR for recommendation is based on BPR optimization criterion, which is equiv-
alent to the CE loss in the implicit feedback scenarios. To the best of our knowl-
edge, the performance of FL and MHL loss functions have not been investigated
in the context of recommendation, and also PRFM and LambdaFM based on
FL and MHL loss functions achieve competitive performance with the ones us-
ing the CE loss. We expect our suggested PRFM (with new loss functions) and
LambdaFM to be valuable for existing recommender systems that are based on
pairwise LtR approaches.

3.7 Chapter Summary

In this chapter, we have presented a novel ranking predictor Lambda Factoriza-
tion Machines (LambdaFM). LambdaFM is a negative sampling based algorithm,
although it is analyzed from the top-N ranking perspective. In contrast with
PRFM, LambdaFM has more advanced samplers, which can effectively find infor-
mative negative examples. LambdaFM is unique in two aspects: (1) it is capable
of optimizing various top-N item ranking metrics in implicit feedback settings;
(2) it is very flexible to incorporate various context information for context-aware
recommendations. Different from the original lambda strategy, which is tailored
for the CE loss function, we have proved that the proposed sampling surrogates
are more general and applicable to a set of well-known ranking loss functions.
Furthermore, we have built a family of PRFM and LambdaFM algorithms, shed-
ding light on how they perform in real tasks. In our evaluation, we have shown
that LambdaFM largely outperforms the state-of-the-art counterparts in terms
of four standard ranking measures. The methodologies and conclusions in this
chapter support the thesis statement (1) and statement (2).

The intuition and sampling design of LambdaFM are also applicable to several

64

3.7 Chapter Summary

other research fields with positive-only data, e.g., the word embedding and visual
semantic embedding tasks, where user-item relation in the item recommendation
task can be regarded as word-word relation in the word embedding (and image-
class relation in the visual semantic embedding) task. Understanding this, it
is possible to adapt the model from one domain to another with some slight
changes. For example, in Guo et al. (2018a), we successfully adapt the ranking
and negative sampling method in LambdaFM for the word embedding task; and in
Guo et al. (2018b), we observe that the adaptive sampler proposed in Rendle and
Freudenthaler (2014) for item recommendation may also be adapted to improve
the repeated sampling process in Weston et al. (2011) for image recognition,
althoughWeston et al. (2011) is not based on the BPR loss which is the main claim
in Rendle and Freudenthaler (2014). The main reason that a specific model can
be used in very different scenarios is probably because data in the three research
fields has some similar distribution. But note that the algorithm may perform
slightly different since characteristics of these datasets are not exactly the same.
Empirically, the data in the visual semantic embedding task is much sparser than
that in the word embedding task. Moreover, different learning algorithms are
also impacted differently by these sampling methods. Here, we intend to clarify
the similarity and difference between these works. Our insightful observation
potentially suggests that many specific models developed in one of these fields
are promising to benefit others by minor (or no) changes. We believe this will
open a new direction of research to bridge these fields (Yuan et al., 2018b).

65

Chapter 4

Boosting Factorization Machines

In this chapter, we design an ensemble method that applies LambdaFM (Yuan
et al., 2016b) and PRFM (Qiang et al., 2013) as component recommenders, called
Boosting Factorization Machines (BoostFM). From this perspective, BoostFM is
also a negative sampling based model for implicit feedback scenario. BoostFM
combines the strengths of boosting and factorization machines during the pro-
cess of item ranking. Specifically, BoostFM is an adaptive boosting framework
that linearly combines multiple homogeneous component recommenders, which
are repeatedly constructed on the basis of individual FM model by a re-weighting
scheme. To demonstrate its effectiveness, we perform experiments on three pub-
licly available datasets and compare BoostFM (with uniform and static sampling)
to state-of-the-art baseline models.

This chapter is mainly based on our previous work “BoostFM: Boosted Factor-
ization Machines for Top-N Feature-based Recommendation” (Yuan et al., 2017)
published in The 22nd Annual Meeting of The Intelligent User Interfaces Com-
munity (IUI) 2017 with DOI: http://dx.doi.org/10.1145/3025171.3025211.

4.1 Introduction

Ensemble learning has become a prevalent method to boost machine learning
results by combining several models. In this chapter, we make contributions on
ensemble-based recommendation models. Specifically, we apply boosting tech-
niques to improve Factorization Machines (FM) in implicit feedback scenarios.
Boosting techniques were first employed to improve the performance of classi-
fication by integrating a set of weak classifiers (i.e., the classification accuracy

66

4.1 Introduction

rate should larger than 0.5) into a stronger one with better performance (Jiang
et al., 2013). Note that since the employed component recommenders all perform
significantly better than random guessing, we do not specify this requirement.
Previous research has proven that boosting techniques usually come with bet-
ter convergence properties and stability (Bertoni et al., 1997; Chowdhury et al.,
2015). So far, the most common implementation of boosting is AdaBoost (Freund
and Schapire, 1997), although some newer boosting variants are reported (Freund,
2001; Freund et al., 2003; Xu and Li, 2007). We find that boosting techniques
have been recently introduced to solve recommendation problems with better re-
sults than single collaborative filtering (CF) algorithms (Jiang et al., 2013; Wang
et al., 2014; Liu et al.; Chowdhury et al., 2015). However, all existing solutions
are based on the basic matrix factorization model, which fails to incorporate more
general context information. Moreover, in our work the learning process of each
component recommender is optimized for top-N recommendation with implicit
feedback, which is different from most previous work either optimized for rating
prediction (Jiang et al., 2013) or even optimized for ranking but on explicit rating
datasets (Chowdhury et al., 2015; Wang et al., 2014).

In this chapter, we propose BoostFM, a boosting approach for top-N context-
aware CF, by combining the most well-known boosting framework AdaBoost with
FM. Specifically, we first choose Factorization Machines to build the component
recommender and multiple homogeneous component recommenders are linearly
combined to create a strong recommender. The coefficient of each component
recommender is calculated from the weight function based on a certain perfor-
mance metric. At each boosting round, we devise a ranking objective function to
optimize the component recommender following PRFM and LambdaFM. That
is each component recomender in BoostFM is also based on negative sampling
method. In addition, in the process of learning, we develop a re-weighting strat-
egy and assign a dynamic weight to force the optimization concentrate more on
observed context-item interactions with bad evaluation performance.

67

4.2 Related Work about Boosting

4.2 Related Work about Boosting

Boosting is a general technique for improving the accuracy of a given learning
algorithm (Freund and Schapire, 1997; Xu and Li, 2007). The basic idea is to
repeatedly construct a number of ‘weak learners’ by using the homogeneous weak
algorithm on re-weighting training data. Then, a strong learner with boosted
total performance is created by composing weak learners linearly. Boosting was
originally developed to enhance the performance of binary classification, where
AdaBoost (Adaptive Boosting) is the most well-known boosting algorithm. Fol-
lowing this, various extensions have been made to deal with problems of multi-
class classification (Friedman et al., 2000), regression (Bertoni et al., 1997), and
ranking (Xu and Li, 2007).

Recently, researchers have proposed conducting the boosting technique in Rec-
ommender Systems. For example, two boosting frameworks based on AdaBoost
have been proposed for the rating prediction task by applying both memory- and
model-based CF algorithms (Jiang et al., 2013). AdaMF (Wang et al., 2014)
borrows the idea from adaRank by combining matrix factorization (MF) rec-
ommender with boosting methods. The coefficient function for each MF rec-
ommender is calculated based on the Normalized Discount Cumulative Gain
(NDCG) performance of the stronger recommender. However, the component rec-
ommenders are constructed using the CF algorithm for rating prediction, which
is suboptimal for item recommendation task in the same setting (such as the sam-
pling method). Similar work has been done in (Chowdhury et al., 2015), where
the component recommender is constructed using probability matrix factorization
(PMF) on explicit rating datasets.

Our work is related to above work, but differ in several significant differences.
First, in BoostFM, the component recommender is constructed by feature-based
FMmodel instead of a simple approach (i.e., so-called weak learner). Note that in-
dividual FM model can easily achieve good prediction performance. In this work,
we can regard FM as a relatively strong1 recommender. Second, the component
recommender is constructed by optimizing a weighted ranking metric (i.e., AUC)

1Previous literature has shown that AdaBoost demonstrates better generalizing performance with correlated
strong learners (Li et al., 2008).

68

4.3 Preliminaries

with implicit feedback, not approximating users’ explicit ratings (e.g., Jiang et al.
(2013); Wang et al. (2014)). In addition, in the boosting procedure, each observed
context-item pair, is treated as a training instance for the weighting calculation,
which differs from previous work treating a given user (Wang et al., 2014) (or
query (Xu and Li, 2007)) as a training instance. BoostFM is the first study for
feature-based collaborative ranking by utilizing the boosting technique. Note it
is worth mentioning that one recent work (Cheng et al., 2014) have exploited
the gradient boosting algorithm for content/context-based rating prediction with
FM. However, this work targeted at the feature selection procedure with gradient
boosting technique, which is completely different from our work concentrating on
improving top-N recommendation.

4.3 Preliminaries

For better understanding the framework of BoostFM, we briefly restate the prob-
lem of content/context-based recommendation based on implicit feedback in this
section.

Let S ⊂ C × I be a set of observed interactions (i.e., so-called implicit feed-
back), where C is a set of context and I a set of items. For example, C could be
a set of users, and I a set of music, and S denotes which music tracks a user has
played, i.e., (a set of) user-music pairs. As previously mentioned, C can handle
more complex examples with additional variables, e.g., mood, social friends, time
and locations, also I might express item with additional side information, e.g.,
artist and albums. The task of content/context-based recommendation is to find
a ranking r̂ of items I for each context c, which can be formulated by a bijective
function (Rendle and Freudenthaler, 2014), i.e., r̂: I × C → {1, ..., |I|}. r̂(j|c)
is the ranking of item j under given context c, which is usually modeled by a
scoring function ŷ(j|c) (i.e., the FM model in this chapter).

For the item recommendation task, the accuracy of a recommender is usually
evaluated using various ranking metrics, such as AUC1 (Rendle et al., 2009b),
the Normalized Discount Cumulative Gain (NDCG) (Pan and Chen, 2013), Pre-
cision@N and Recall@N (Li et al., 2015b). For example, the definitions of AUC

1Note that maximizing a smoothed AUC is still a popular way for optimizing a ranking algorithm (e.g.,
(Shi et al., 2014; Rendle and Freudenthaler, 2014; Zhao et al., 2014)), although it is position-independent.

69

4.4 Boosted Factorization Machines

and NDCG per context is given below.

AUC(c) =
1

|I+
c |
∑
i∈I+c

1

|I\I+
c |

∑
j∈I\I+c

I(r̂(i|c) < r̂(j|c)) (4.1)

NDCG(c) = Zc

|I|∑
r̂(i|c)=1

2relr̂(i|c) − 1

log2 (r̂(i|c) + 1)
(4.2)

where I+
c represents the set of items that have been selected under context c, and

I(·)=1 if the condition is true, and 0 otherwise; relr̂ represents the relevance score
of a candidate item at the position r̂, here we use a binary value 0-1 for quantity.
Zc is calculated from the normalization constant so that the ideal ranker will get
NDCG of 1.

4.4 Boosted Factorization Machines

We propose a novel algorithm to solve the context-aware recommendation prob-
lem by optimizing the ranking measures. The algorithm is referred to as Boosted
Factorization Machines (BoostFM for short), the derivation of which is inspired
by AdaBoost, AdaRank (Xu and Li, 2007) and and Liu et al.; Jiang et al. (2013);
Wang et al. (2014); Chowdhury et al. (2015). While AdaRank is not suitable for
sparse data prediction and Liu et al.; Jiang et al. (2013); Wang et al. (2014);
Chowdhury et al. (2015) is only suited for the basic collaborative filtering task
with two input features. BoostFM is generic boosting algorithm tailed for sparse
features and optimized by the ranking loss.

4.4.1 BoostFM

We aim at devising a set of ‘weak learner’1 sequentially to model the pairwise
interactions between various feature variables. However, the BoostFM algorithm
will be able to concentrate hard on optimizing the objective function defined based
on ranking metrics. We observe from Eq. (4.1) and Eq. (4.2) that the accuracy of
a recommender model is determined by the rank positions (i.e. r̂(i|c)) of positive
items i ∈ I+

c of each context c. Thus, we devise a general performance measure
function E [r̂(c, i, g)] to denote the recommendation accuracy associated with each

1As a ‘weak learner’, FM fairly meets the basic conditions, reflected in both linear complexity and higher
prediction accuracy than random guessing.

70

4.4 Boosted Factorization Machines

observed context-item pair. The argument of general function r̂(c, i, g) is the rank
position of item i for each context c, calculated by the trained function g. Thus
we can rewrite the ranking metric of AUC and NDCG as below

AUC =
1

|C|
∑
c∈C

1

|I+
c |
∑
i∈I+c

E [r̂(c, i, g)] =
1

|C|
∑

(c,i)∈S

1

|I+
c |
E [r̂(c, i, g)] (4.3)

where
E [r̂(c, i, g)] =

1

|I\I+
c |

∑
j∈I\I+c

I(r̂(i|c) < r̂(j|c)) (4.4)

NDCG =
1

|C|
∑
c∈C

Zc

|I|∑
r̂(i|c)=1

E [r̂(c, i, g)] =
1

|C|
∑

(c,i)∈S

ZcE [r̂(c, i, g)] (4.5)

where
E [r̂(c, i, g)] =

1

log2 (r̂(i|c) + 1)
(4.6)

To maximize Eq. (4.3) and Eq. (4.5), we propose to minimize the following ob-
jective function (Note that 1

|C| ,
1
|I+c |

, Zc are normalizing constants).

argmin
g∈Ω

∑
(c,i)∈S

{1− E [r̂(c, i, g)]} (4.7)

where Ω is the set of ranking scoring functions. It is non-trivial to directly
optimize E [r̂(c, i, g)], which is a non-continuous function. Instead, we propose to
minimize an upper bound of Eq. (4.7) by leveraging the property e−x ≥ 1 − x

(x ∈ R) such that it can be fitted in AdaBoost Framework easily.

argmin
g∈Ω

∑
(c,i)∈S

exp{−E [r̂(c, i, g)]} (4.8)

Following the idea of AdaBoost, BoostFM is expected to generate a strong recom-
mender by linearly combining multiple homogeneous component recommenders1.
Thus the ranking function (so-called strong recommender) g can be expressed as

g(t) =
T∑
t=1

βtŷ
(t) (4.9)

where ŷ(t) is the t-th component recommender constructed by the FM model and
βt ∈ R+ is the coefficient which is usually determined by the overall recommenda-
tion performance (e.g., AUC or NDCG) of ŷ(t) at t-th boosting round. BoostFM
runs for T rounds and creates a new component recommender y(t) at each round.

1The term weak learner, weak recommender and component recommender are used interchangeably in this
chapter.

71

4.4 Boosted Factorization Machines

Algorithm 4 BoostFM
1: Input: The observed context-item interactions S, parameters E and T .
2: Output: The strong recommender g(T)

3: Initialize Q(t)
ci = 1/|S|, g(0) = 0, ∀(c, i) ∈ S

4: for t =1,..., T do
5: Create ŷ(t) with Q(t) on S,∀(c, i) ∈ S, i.e. Algorithm 5;
6: Calculate the ranking accuracy E [r̂(c, i, g)], ∀(c, i) ∈ S;
7: Calculate the coefficient βt,

8: βt = ln(
∑

(c,i)∈S Q(t)
ci {1+E[r̂(c,i,y(t))]}∑

(c,i)∈S Q(t)
ci {1−E[r̂(c,i,y(t))]}

)
1
2 ;

9: Create the strong recommender g(t),
10: g(t) =

∑t
h=1 βhŷ

(h);
11: Update weight distribution Q(t+1),

12: Q(t+1)
ci =

exp{−E[r̂(c,i,g(t))]}∑
(c,i)∈S exp{−E[r̂(c,i,g(t))]}

13: end for

Then the newly trained recommender is integrated to the final ensemble recom-
mender g(t). The minimization in Eq. (4.8) is converted to

arg min
βt,y(t)∈Φ

∑
(c,i)∈S

exp{−E
[
r̂(c, i, g(t−1) + βty

(t))
]
} (4.10)

where Φ is the set of possible component recommenders., and g(t−1) =
∑t−1

h=1 βhy
(h).

To solve Eq. (4.10), we propose to maintain a distribution of weights over each
observed (c, i) pair in the training data, denoted by matrix Q ∈ R|C|×|I|. The
weight value on the (c, i) training instance at round t is denoted by Q(t)

ci . More
specifically, the weight distribution reflects the emphasis on the component recom-
mender. At each boosting round, weight values Q(t)

ci on (c, i) pairs with low rank
performance by the ensemble strong recommender (i.e., Eq. (4.9)) is increased
so that the component recommender at next boosting round would be forced to
give more penalties to those ‘hard’ training instances. For the implementation
of BoostFM, we propose to employ the ‘forward stage-wise approach’ (Li et al.,
2015b), where g(t) is treated as the additive model, y(t) is the basis function, and
βt is the expansion coefficient of a basis function. BoostFM starts with g(0) = 0,
and then adds new basis functions greedily, without changing the parameters
(i.e., Θ) and coefficients of those that have already been added. At each round t,
a new expansion coefficient βt and basis function y(t) can be found to minimize
the exponential objective function. More details about the BoostFM have been

72

4.4 Boosted Factorization Machines

shown in Algorithm 4. Note that it is computationally expensive to calculate
E
[
r̂(c, i, y(t))

]
directly due to the large size of implicit feedback, we solve it by

first performing a uniform sampling to obtain a few non-observed items (say 50),
and then calculating the rank of i among them as an unbiased estimator of r̂(i|c).
Following AdaRank (Xu and Li, 2007), it can be proved that as follows there
exists a lower bound in terms of the performance measures can be continuously
grown.

Theorem 1. The following bound holds in terms of ranking accuracy (e.g., AUC)
of BoostFM algorithm on the training data:

1

|C|
∑

(c,i)∈S

1

|I+
c |
E [r̂(c, i, g)] ≥

∑
(c,i)∈S

1
|I+c |

|C|

[
1−

T∏
t=1

e−δ
t
min

√
1−π(t)2

]
where π(t) =

∑
(c,i)∈S Q(t)

ci E
[
r̂(c, i, y(t))

]
, δtmin = min(c,i)∈Sδ

t
ci,

and δtci = E
[
r̂(c, i, g(t−1) + βty

(t))
]
− E

[
r̂(c, i, g(t−1))

]
− βtE

[
r̂(c, i, y(t))

]
, for all

(c, i) ∈ S and t = 1, 2, ..., T .

4.4.2 Component Recommender

Since this work targets at the top-N recommendation task, we thus propose the
ranking optimization methods to create the component recommenders. Natu-
rally, it is feasible to exploit the Learning-to-Rank (LtR) techniques to optimize
Factorization Machines (FM). As has been introduced in Chapter 3, In the fol-
lowing, we present BoostFM with both PRFM and LambdaFM as component
recommenders.

4.4.2.1 Weighted Pairwise Factorization Machines

Following PRFM in Chapter 3, We employ the weighted cross entropy (CE) as
the pairwise objective function to learn the preference relations between each two
(c, i) pairs. The component recommender is referred to as Weighted Pairwise
Factorization Machines (WPFM for short).

By combining the weight distribution ofQ, the objective function and gradient
for each (i, j)c pair is given by

L
(
(i, j)c

)
= Q(t)

ci log(1 + exp(−σ(ŷ(xi)− ŷ(xj)))) (4.11)

73

4.4 Boosted Factorization Machines

Algorithm 5 Component Recommender Learning

1: Input: The set of all pairwise relations Ds, the weight distribution Q(t),
regularization parameters γθ, learning rate η

2: Output: Parameters Θ = (w,V)
3: Initialize Θ: w← (0, ..., 0); V ∼ N (0, 0.1);
4: repeat
5: Draw (c, i) from S uniformly ;
6: Draw j from I\I+

c uniformly ;
7: for f ∈ {1, ..., k} do
8: for d ∈ {1, ..., n} ∧ xd 6= 0 do
9: Update vd,f ;

10: end for
11: end for
12: for d ∈ {1, ..., n} ∧ xd 6= 0 do
13: Update wd;
14: end for
15: until meet the condition (e.g., after several iterations)

∂L((i, j)c)

∂θ
= λi,j(

∂ŷ(xi)
∂θ

− ∂ŷ(xj)
∂θ

) (4.12)

where ŷ(x) is the FM model, and λi,j is the learning weight for (i, j)c pair, given
as

λi,j =
∂L((i, j)c)

∂(ŷ(xi)− ŷ(xj))
=− σQ(t)

ci

1 + exp(σ
(
ŷ(xi)− ŷ(xj)))

(4.13)

Following the similar derivation in Chapter 3, we have

wd ← wd − η(λi,j(x
i
d − x

j
d) + γwdwd) (4.14)

vd,f ← vd,f − η(λi,j(
n∑
l=1

vl,f (x
i
dx

i
l − x

j
dx

j
l)− vd,f (x

i
d

2 − xjd
2
)) + γvd,fvd,f)

where γθ (i.e., γwd , γvd,f) is a hyper-parameter for the L2 regularization, and η

is the learning rate. To deal with the large number of unobserved feedback (i.e.,
I\I+

c), the common practice is to exploit Stochastic Gradient Descent (SGD) with
uniform sampling. Finally, Algorithm 5 shows how the component recommender
is optimized with weighted pairwise learning.

4.4.2.2 Weighted LambdaFM Factorization Machines

As mentioned in LambdaFM, the static sampler shows better performance than
the uniform sampler. Hence, we employ LambdaFM as a component recom-

74

4.5 Experiments

Table 4.1: Basic statistics of datasets. Each tuple represents an observed
context-item interaction. Note that tags on the MLHt dataset are regarded as
recommended items (i.e., i in xi), while a user-item (i.e., user-movie) pair is
regarded as context (i.e., c in xc).

Datasets Users Items Tags Artists Albums Tuples
MLHt 2113 5908 9079 - - 47958
Lastfm 983 60000 - 25147 - 246853
Yahoo 2450 124346 - 9040 19851 911466

mender, the way of which is referred to as Weighted Lambda Factorization Ma-
chines (WLFM).

In Chapter 3, we have proposed three lambda-based negative sampler. In
BoostFM, we only investigate the static sampler since it is does not have addi-
tional computational complexity. However, we find that a following work by Li
et al. (2018) inspired LambdaFM and BoostFM has verified all three samplers
and show consistent performance. Here, we use the same static negative sampler
in LambdaFM, i.e., sampling more popular items approximately proportional to
the empirical popularity distribution. pj is given below

pj ∝ exp(− r(j)

|I| × ρ
), ρ ∈ (0, 1] (4.15)

where r(j) represents the rank of item j among all items I according to the overall
popularity, ρ is a parameter to control the sampling distribution of negative items.
Therefore, Line 6 in Algorithm 5 can be replaced by the above sampler.

4.5 Experiments

In this section, we conduct experiments on the three real-world datasets to verify
the effectiveness of BoostFM in various settings.

4.5.1 Experimental Setup
4.5.1.1 Datasets

We use three publicly accessible recommendation datasets for our experiments,
namely, MovieLens Hetrec (MLHt)1 (user-movie-tag triples, where the context is
a user-movie pair, the item is the tag), Lastfm2 (user-music-artist triples, where

1http://grouplens.org/datasets/hetrec-2011/
2dtic.upf.edu/~ocelma/MusicRecommendationDataset/lastfm-1K.html

75

http://grouplens.org/datasets/hetrec-2011/
dtic.upf.edu/~ocelma/MusicRecommendationDataset/lastfm-1K.html

4.5 Experiments

the context is the user, the item is a music track with an artist) and Yahoo
music1 (user-music-artist-album tuples, where the context is the user, the item
is a music track with an artist and album). In the MLHt dataset, the task is to
recommend top-N relevant tags for each user-movie pair, while on the Lastfm and
Yahoo datasets, it is to recommend top-N preferred music tracks (with item side
information) to each user. To speed up the experiments, we follow the common
practice as in (Christakopoulou and Banerjee, 2015) by randomly sampling a
subset of users from the user pool of the Yahoo dataset2, and a subset of items
from the item pool of the Lastfm dataset. The MLHt dataset is kept in its
original form. The statistics of the datasets after preprocessing are summarized
in Table 4.1.

4.5.1.2 Evaluation Metrics

To evaluate the performance of BoostFM, we display our results with two widely
used ranking metrics, namely, Precision@N and Recall@N (denoted by Pre@N
and Rec@N respectively), where N is the number of recommended items (again,
tags are considered as items on the MLHt datasets. Please note that the results
on other ranking metrics, such as NDCG and MRR, are highly consistent. The
definitions of Pre@N and Rec@N have been given in Chapter 3.

4.5.1.3 Baseline Methods

In our experiments, we compare our algorithm with several powerful baseline
methods, namely, Most Popular (MP), User-based Collaborative Filtering (UCF),
Bayesian Personalized Ranking (BPR), Factorization Machines (FM). Specifi-
cally, for tag recommendation on the MLHt dataset, we utilize MP, FM and
PITF as baselines. For music recommendation based on additional content in-
formation, we utilize MP, UCF, FM, BPR, and PRFM as baselines. For clarity,
we refer to BoostFM with WPFM and WLFM as B.WPFM and B.WLFM re-
spectively. We refer to PRFM with the CE loss and Hinge loss as PRFM.CE
and PRFM.H respectively. The descriptions of CE and Hinge loss, and baselines,
including MP, BPR and FM, have been given in Chapter 3.

1http://webscope.sandbox.yahoo.com/catalog.php?datatype=r&did=2
2The number of context-item interactions on the original dataset has close to billion level.

76

http://webscope.sandbox.yahoo.com/catalog.php?datatype=r&did=2

4.5 Experiments

• User-based Collaborative Filtering (UCF) (Gao et al., 2013): It is a typical
memory-based CF algorithm applicable for both rating prediction and item
ranking tasks. Pearson correlation is used in this work to compute user
similarity and the top-20 most similar users are selected as the nearest
neighbors.

• Pairwise Interaction Tensor Factorization (PITF) (Rendle and Schmidt-
Thieme, 2010): PITF is a state-of-the-art tensor factorization model opti-
mized by the BPR loss. It is the winner in Tag Recommendation of ECML
PKDD Discovery Challenge1.

4.5.1.4 Hyper-parameter Settings

There are several critical hyper-parameters needed to be set for BoostFM.

• The number of component recommender T : For the purpose of comparison,
T of BoostFM is set to 10 in all three datasets if not explicitly declared.
The contribution of T is discussed later in Section 4.5.2.2.

• Learning rate η and regularization γθ: We first employ the 5-fold cross val-
idation to find the best η by running BoostFM with η ∈ {0.005, 0.01, 0.02,
0.05, 0.08, 0.1, 0.2, 0.4}, and then tune γθ the same way by fixing η. Specif-
ically, η is set to 0.08 on the Lastfm and Yahoo datasets, and 0.4 on the
MLHt dataset; γθ is set to 0.05, 0.02 and 0.005 on the Lastfm, Yahoo and
MLHt dataset respectively. In our experiment, we find all FM based models
perform well enough by just employing polynomial term (refer to Eq. (2.7)),
and thus we omit the configuration of the linear term. Baseline algorithms
are tuned in the same way.

• Latent dimension k: Like in Chapter 3, for comparison purposes, the ap-
proaches assign a fixed k value (e.g., k = 30 in our experiments) for all
methods based on factorization models. Results for k = 10, 50, 100 show
similar behaviors.

• Distribution coefficient ρ: ρ ∈ (0, 1] tuned according to the data distribu-
tion. Details will be given in the later section.

1http://www.kde.cs.uni-kassel.de/ws/dc09

77

4.5 Experiments

4.5.2 Performance Evaluation

All experiments are conducted with the standard 5-fold cross validation. The
average results over 5 folds are reported as the final performance.

4.5.2.1 Accuracy Summary

Figure 4.1(a-f) shows the prediction quality of all algorithms on the three datasets.
Like in Chapter 3 there are several similar interesting observations that can be
made. In this chapter, we mainly focus on investing the performance impact by
using the boosting strategy.

BoostFM vs. PRFM and PITF: In Figure 4.1, we observe that our BoostFM
(i.e., B.WPFM and B.WLFM) consistently outperforms the state-of-the-art meth-
ods PITF and PRFM. For example, on the MLHt dataset, we can calculate that
B.WPFM outperforms PITF by 6.1% and 5.4% in terms of Pre@10 and Rec@10
respectively1. In particular, the significant improvements by B.WPFM (com-
pared with PRFM.CE and PRFM.H) are more than 18% on Pre@10 and 35% on
Rec@10 on both Lastfm and Yahoo datasets. The results shows that the accuracy
of top-N recommendation can be largely improved by using boosting technique.
Note that B.WPFM will reduce to PITF and PRFM when the component rec-
ommenders T = 1.

B.WPFM vs. B.WLFM: In contrast to B.WPFM, B.WLFM achieves much
better results on all datasets in Figure 4.1. The difference is that the component
recommender WLFM is trained by more advanced static sampler while WPFM
is trained by a uniform sampler. The impact of different negative samplers have
been thoroughly studied in Chapter 3, and the results are consistent with previous
studies in LambdaFM.

4.5.2.2 Effect of Number of Component Recommenders

In this subsection, we evaluate the performance sensitivity of BoostFM to the
number of component recommenders T . T is adjusted from 1 to 50 and ρ for
B.WLFM is set to a fixed value2 (e.g., 0.3) for a fair comparison. The results

1We only use the top-10 (i.e., Pre@10 and Rec@10) value for the following descriptions since the performance
trend on other top-N values is consistent.

2Again, the performance trend keeps consistent for any value of ρ ∈ {0.1, 0.3, 0.5, 0.8, 1.0}.

78

4.5 Experiments

2 4 6 8 10 12 14 16 18 20

0.008

0.028

0.048

0.068

0.088

0.108

0.128

0.148

0.168

0.188

0.208

N

P
re
@
N

MP
FM
PITF
B.WPFM
B.WLFM

(a) P-MLHt

2 4 6 8 10 12 14 16 18 20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

N

R
ec
@
N

MP
FM
PITF
B.WPFM
B.WLFM

(b) R-MLHt

2 4 6 8 10 12 14 16 18 20

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

N

P
re
@
N

MP
UCF
FM
BPR
PRFM.H
PRFM.CE
B.WPFM
B.WLFM

(c) Lastfm

2 4 6 8 10 12 14 16 18 20

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

N

R
ec
@
N

MP
UCF
FM
BPR
PRFM.H
PRFM.CE
B.WPFM
B.WLFM

(d) Lastfm

2 4 6 8 10 12 14 16 18 20

0.04

0.06

0.08

0.1

0.12

0.14

0.16

N

P
re
@
N

MP
UCF
FM
BPR
PRFM.H
PRFM.CE
B.WPFM
B.WLFM

(e) P-Yahoo

2 4 6 8 10 12 14 16 18 20

0.002

0.009

0.016

0.023

0.03

0.037

0.044

0.051

0.058

N

R
ec
@
N

MP
UCF
FM
BPR
PRFM.H
PRFM.CE
B.WPFM
B.WLFM

(f) R-Yahoo

Figure 4.1: Performance comparison w.r.t., top-N values, i.e., Pre@N and
Rec@N. N ranges from 2 to 20, the number of component recommender T is
fixed to 10, and ρ for B.WLFM is fixed to 0.3.

79

4.5 Experiments

1 2 4 6 8 10 12 15 20 30 40 50

0.058

0.059

0.06

0.061

0.062

0.063

0.064

0.065

0.066

Number of Component Recommender T

P
re

@
10

B.WPFM
B.WLFM

(a) P-MLHt

1 2 4 6 8 10 12 15 20 30 40 50

0.525
0.53

0.535
0.54

0.545
0.55

0.555
0.56

0.565
0.57

0.575
0.58

0.585
0.59

Number of Component Recommender T

R
ec

@
10

B.WPFM
B.WLFM

(b) R-MLHt

1 2 4 6 8 10 12 15 20 30 40 50

0.115

0.12

0.125

0.13

0.135

0.14

0.145

0.15

0.155

0.16

0.165

Number of Component Recommender T

P
re

@
10

B.WPFM
B.WLFM

(c) Lastfm

1 2 4 6 8 10 12 15 20 30 40 50

0.033

0.036

0.039

0.042

0.045

0.048

0.051

0.054

Number of Component Recommender T

R
ec

@
10

B.WPFM
B.WLFM

(d) Lastfm

1 2 4 6 8 10 12 15 20 30 40 50

0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

0.115

0.12

Number of Component Recommender T

P
re

@
10

B.WPFM
B.WLFM

(e) P-Yahoo

1 2 4 6 8 10 12 15 20 30 40 50

0.02

0.022

0.024

0.026

0.028

0.03

0.032

0.034

Number of Component Recommender T

R
ec

@
10

B.WPFM
B.WLFM

(f) R-Yahoo

Figure 4.2: Performance trend of BoostFM (i.e., B.WPFM and B.WLFM) w.r.t.
Pre@10 and Rec@10. T ranges from 1 to 50, and ρ is fixed to 0.3.

on all datasets are summarized in Figure 4.2, in terms of Pre@10 and Rec@10.
We observe that the top-10 recommendation performance generally improves by
increasing the number of component recommenders T , particularly when T is
smaller than 10. When T is larger than 10, adding more component recom-
menders generates marginal performance improvements. In addition, we can
observe that B.WLFM performs significantly better than B.WPFM, which is con-
sistent with previous results in Figure 4.1. Again, when T is set to 1, B.WPFM
reduces to PRFM.CE. The different performance between them comes from their
parameter settings since the best hyper-parameters of B.WPFM are found based
on T = 10.

80

4.5 Experiments

0.1 0.3 0.5 0.8 1.0

0.053

0.056

0.059

0.062

0.065

r

P
re
@
10

B.WPFM
B.WLFM

(a) MLHt

0.1 0.3 0.5 0.8 1.0

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

r

P
re
@
10

B.WPFM
B.WLFM

(b) Lastfm

0.1 0.3 0.5 0.8 1.0

0.02

0.05

0.08

0.1

r

P
re
@
10

B.WPFM
B.WLFM

(c) Yahoo

0.1 0.3 0.5 0.8 1.0

0.48

0.5

0.52

0.54

0.56

0.58

r

R
ec
@
10

B.WPFM
B.WLFM

(d) Lastfm

0.1 0.3 0.5 0.8 1.0

0.03

0.035

0.04

0.045

0.05

r

R
ec
@
10

B.WPFM
B.WLFM

(e) Lastfm

0.1 0.3 0.5 0.8 1.0

0.008

0.015

0.022

0.029

r

R
ec
@
10

B.WPFM
B.WLFM

(f) R-Yahoo

Figure 4.3: Performance trend of BoostFM by tuning ρ w.r.t. Pre@10 &
Rec@10. ρ ∈ {0.1, 0.3, 0.5, 0.8, 1.0}, T = 10.

4.5.2.3 Effect of Sampling Strategies (i.e., ρ)

The effect of parameter ρ has been studied in LambdaFM in Chapter 3. Here, we
verify it in the setting of BoostFM. Similarly as in Chapter 3, ρ directly controls
the sampling distribution of negative items. As expected, it will have a big impact
on the recommendation performance. By tuning ρ ∈ {0.1, 0.3, 0.5, 0.8, 1.0}, we
depict the results in Figure 4.3. First, we clearly see that BoostFM with WLFM
performs much better than that with WPFM when ρ ∈ [0.3, 1.0]. Particularly,
WLFM produces best accuracy when setting ρ to 0.3 in nearly all datasets, but
then the performance experiences a significant decrease when setting it to 0.1.
The reason is because the component recommender WLFM concentrates more
gradient steps on the most popular items due to the oversampling scheme when
ρ is set to a small value (i.e., ρ = 0.1) based on Eq. (4.15). In this case, most

81

4.5 Experiments

0.04

0.05

0.06

(i,t) (u,i,t)
(c, i)

P
re

@
10

B.WPFM
B.WLFM

(a) Pre-MLHt

0.10

0.12

0.14

0.16

(u,i) (u,i,a)
(c, i)

P
re

@
10

B.WPFM
B.WLFM

(b) Pre-Lastfm

0.08

0.09

0.10

0.11

0.12

(u,i) (u,i,a) (u,i,a,a)
(c, i)

P
re

@
N

B.WPFM
B.WLFM

(c) Pre-Yahoo

0.4

0.5

0.6

(i,t) (u,i,t)
(c, i)

R
ec

@
10

B.WPFM
B.WLFM

(d) Rec-MLHt

0.030

0.035

0.040

0.045

0.050

(u,i) (u,i,a)
(c, i)

R
ec

@
10

B.WPFM
B.WLFM

(e) Rec-Lastfm

0.020

0.025

0.030

0.035

(u,i) (u,i,a) (u,i,a,a)
(c, i)

R
ec

@
10

B.WPFM
B.WLFM

(f) Rec-Yahoo

Figure 4.4: Performance comparison w.r.t. Pre@10 & Rec@10 with context
and side information. In (a) (d), (i, t) denotes an item-tag (i.e., movie-tag) pair
and (u, i, t) denotes a user-item-tag triple; in (b)(c)(e)(f) (u, i) denotes a user-
item (i.e., user-music) pair and (u, i, a) denotes a user-item-artist triple; similarly,
(u, i, a, a) denotes a user-item-artist-album quad. T is fixed to 10, and ρ is fixed
to 0.3.

less unpopular items will not be chosen for training, and thus the model is under-
trained. In practice, we would suggest to tune the parameter ρ progressively from
a larger value (e.g., 1.0) to a smaller one and find the one that performs best in
the training set. Empirically, the longer tail a recommendation dataset has, the
smaller ρ can be adjusted.

4.5.2.4 Effect of Adding Features

Like in Chapter 3, we investigate the performance of BoostFM by adding context
and content information. The results are shown in Figure 4.4. First, we observe
BoostFM performs much better with (u, i, a) tuples than that with (u, i) tuples
on the Lastfm and Yahoo datasets. This result is intuitive as a user may like
a music track if she likes another one by the same artist. Second, as expected,

82

4.6 Chapter Summary

BoostFM with (u, i, a, a) tuples performs further better than that with (u, i, a)

tuples in (c) and (f). The results verify the effectiveness of BoostFM in modeling
item attribute information. In addition, similar result can be observed on the
MHLt dataset: BoostFM achieves largely better results with (u, i, t) tuples than
that with (i, t) tuples. We draw the conclusion that the more effective feature
information incorporated, the better BoostFM performs. Interestingly, we find
an outlier result on the MHLt dataset where the B.WLFM does not outperform
B.WPFM with (i, t) pair. By manual inspection, we find that the tags for each
user-movie (i.e., c) pair is highly dominated by the user’s preference (e.g., tagging
habits) rather than the movie itself. In other words, some users assign the same
tags for many different movies. The user bias problem can be well handled when
the user information is considered during the pairwise comparison (e.g, BoostFM
with (u, i, t) tuples), while B.WLFM usually leads to non-improved results with-
out the user context. The reason might be that the overall popular tags for movies
may not be popular tags for user-movie pairs.

4.6 Chapter Summary

In this chapter, we have proposed a novel ranking predictor Boosted Factorization
Machines (BoostFM) for item recommendation from implicit feedback. Inherit-
ing advantages from both boosting technique and FM, BoostFM (1) is capable
of improving top-N recommendation performance by combining a set of compo-
nent recommenders; (2) is very flexible to integrate auxiliary information, such
as context and item content information, for better recommendation accuracy.
Extensive results on three real-world datasets show that the suggested BoostFM
(both B.WPFM and B.WLFM) clearly outperforms a bunch of state-of-the-art
CF counterparts.

Like LambdaFM and PRFM, BoostFM is also a negative sampling based
method, although the main work in this chapter is not to propose new negative
sampling techniques.

83

Chapter 5

Geographical Bayesian Personalized
Ranking

In the last two chapters, we have introduced two generic recommender models
that can be used for both content/context-aware and basic collaborative filter-
ing settings. In this chapter, we focus on introducing a point-of-interest (POI)
recommendation approach that explicitly models users’ geographical preference,
and fuse it with general preference seamlessly. Although the main argument of
this chapter is claimed from the ranking perspective, the implementation is also
alongside with negative sampling techniques.

The influence of geographical neighborhood has been demonstrated to be use-
ful in improving preference value prediction (e.g., rating prediction) task. How-
ever, few works have exploited it to build a ranking-based model for top-N item
recommendations. In this work, we find that each individual’s traits are likely to
cluster around multiple centers, after a manual inspection of real-world datasets.
Hence, this chapter presents a co-pairwise ranking model GeoBPR (geographical
Bayesian personalized ranking) based on the observation that users prefer to as-
sign higher ranks to the POIs near previously rated ones. GeoBPR is optimized
by location-based negative sampling and stochastic gradient descent approach.
Hence, it can learn preference ordering from unobserved training pairs by lever-
aging location information, and thus can alleviate the sparsity problem of ma-
trix factorization. Evaluation on two publicly available datasets shows that our
method performs significantly better than the state-of-the-art techniques for the
item recommendation task.

This chapter is mainly based on our previous work “Joint Geo-Spatial Prefer-

84

5.1 Introduction

ence and Pairwise Ranking for Point-of-Interest Recommendation” published in
International Conference on Tools with Artificial Intelligence (ICTAI) 2016 with
DOI:10.1109/ICTAI.2016.00181. The paper won the best student paper award in
ICTAI2016.

5.1 Introduction

Location-based social networks have emerged as an application to assist users
in improving decision-making among a huge volume of point-of-interests (POIs),
e.g. bars, stores, and cinemas. Typical location-based websites, such as yelp.com
and foursquare.com, allow users to check-in POIs with mobile devices like smart
phones and share tips with online friends (Gao et al., 2015). Yelp, for instance,
reaches a monthly average of 83 million unique access via mobile devices, with
nearly hundred million reviews by the end of 20152. Since these sites contain
a vast amount of valuable information about business popularity and customer
preference, making an effective satisfactory decision among POIs has become a
serious challenge for individuals. POI recommendation aims to solve such prob-
lems by predicting preference scores to unknown POIs and returning the top-N
highest ranked POIs for active users according to their previous visits.

At first sight, POI recommendation has no difference from suggesting other
types of products e.g. a song or a movie. The key difference, between a POI
and other kind of products that have been studied in literature, is that a POI
physically exists at a specific spatial area and geocoded by geographical lon-
gitude/latitude coordinates (Hu et al., 2014). Moreover, physical interactions
between users and POIs play an important role in the check-in decision-making
process. Based on this observation, many research techniques e.g., Ye et al.
(2011); Yuan et al. (2013); Zhang and Chow (2015) have been proposed to model
geographical influence.

However, most recent efforts focus on fitting a check-in frequency based on the
user’s historical visiting profiles. In particular, different types of contextual in-
formation, e.g., geographical coordinates (Cheng et al., 2012), time stamps (Gao
et al., 2013), social friends (Ye et al., 2012), categories (Zhang and Chow, 2015)

1Copyright: c○ 2016 IEEE. Reprinted, with permission, from Yuan et al. (2016d)
2http://www.yelp.co.uk/press

85

 yelp.com
foursquare.com

5.2 Related Work for POI recommendation

are incorporated in a single collaborative filtering (CF) model, e.g., matrix factor-
ization (Lian et al., 2014) or a unified framework (Cheng et al., 2012; Yuan et al.,
2013; Ye et al., 2011; Zhang and Chow, 2015). Differently, a pairwise based opti-
mization criterion, using the Bayesian theory, has been proposed, which is known
as BPR (Rendle et al., 2009b). Prior research has shown that the BPR-based
approaches empirically outperform pointwise methods for implicit feedback data
(Pan and Chen, 2013; Rendle et al., 2009b) with the same sampling method.
However, the BPR-based ranking models do not explicitly exploit geographical
influence. Hence, there seems a large marginal space left to improve the perfor-
mance by extending it for POI recommendation.

We can infer that combining geo-spatial preference and the BPR optimization
criterion creates new opportunities for POI recommendation, which has not been
investigated yet. Our contributions are as follows: (1) We conduct a manual
inspection on real-world datasets, and observe that a user’s rating distribution
represents a spatial clustering phenomenon. Thus, we presume that unrated
POIs surrounded a POI that users prefer are more likely to be assigned higher
ranks over the distant unrated ones. In our work, a user’s geo-spatial prefer-
ence is exploited as intermediate feedback, treated as weak preference relative to
positive feedback and as strong preference in comparison to other non-positive
feedback. (2) We propose a co-pairwise ranking model, which is called geographi-
cal Bayesian personalized ranking (GeoBPR) based on the above assumption. In
this case, we reformulate the item recommendation problem into a two-level joint
pairwise ranking task. To our best knowledge, the reported work is the first to
combine BPR optimization criterion with users’ geographical preference. (3) We
conduct extensive experiments to evaluate the effectiveness of GeoBPR, and the
results indicate that our proposed model can significantly outperform an array of
counterparts in terms of four popular ranking metrics.

5.2 Related Work for POI recommendation

In this section, we briefly review the recent advances in POI recommendation,
particularly those employing geographical influence for POI recommendation.

Recently, a number of valuable works have been presented in the realm of

86

5.2 Related Work for POI recommendation

POI recommendation. Based on the type of additional information involved,
POI recommendation algorithms have been classified into four categories (Zhao
et al., 2016a), which are (1) pure check-in/rating based POI recommendation
approaches (Berjani and Strufe, 2011), (2) social influence enhanced POI recom-
mendation (Cheng et al., 2012; Zhang and Chow, 2015), (3) temporal influence
enhanced POI recommendation (Gao et al., 2013; Zhang and Chow, 2015), and
(4) geographical influence enhanced POI recommendation (Cheng et al., 2012;
Lian et al., 2014; Ye et al., 2011). In particular, in terms of geographical influ-
ence enhanced POI recommendation, usual approaches are to assume that users
tend to visit nearby POIs and the probability of visiting a new place decreases
as the distance increases. For example, Ye et al. (2011) and Yuan et al. (2013)
modelled the check-in probability to the distance of the whole visiting history
by power-law distribution; Cheng et al. (2012) pointed out that they ignored
the geographical cluster phenomenon of users’ check-ins, and computing all pair-
wise distance of the whole visiting history is time-consuming and thus cannot be
adapted to large-scale datasets. In contrast, they suggested to model the proba-
bility of a user’s check-ins as a multi-center Gaussian Model (MGM). Moreover,
Zhang and Chow (2015) developed a personalized geographical distribution by
applying a Kernel Density Estimation (KDE); Lian et al. (2014) incorporated the
spatial clustering phenomenon into matrix factorization to improve recommen-
dation performance. On the other hand, Liu et al. (2013) proposed a two-stage
recommendation framework, where at the first stage, users’ preference transitions
are predicted by a basic matrix factorization (MF) model, and at the second
stage, users’ preferences for locations in the corresponding categories are inferred
by another MF model. In contrast with the aforementioned works, the proposed
geographical Bayesian personalized ranking (GeoBPR) is designed by fitting a
user’s preference rankings for POIs, instead of fitting her check-in counts as tra-
ditional factorization methods do. Similarly, (Li et al., 2015a) designed a pairwise
ranking model (Rank-GeoFM) based on the Ordered Weighted Pairwise Classi-
fication (OWPC) criterion that can incorporate differentcontextual information.
The difference is that GeoBPR incorporates geographical preference with BPR
criterion, while Rank-GeoFM incorporates geographical preference by prediction
function, i.e., a matrix factorization model.

87

5.3 Geo-spatial Preference Analysis

Table 5.1: Basic statistics of Datasets.

DataSets #Users #POIs #Ratings Density
Phoenix 4510 16402 226351 0.31%
Las Vegas 4470 11376 207649 0.41%
DataSets Avg.U N.50 N.100 N.200
Phoenix 50.19 2.51 5.26 12.6
Las Vegas 46.45 5.54 9.44 20.8
DataSets N.400 N.600 N.1000 N.2000
Phoenix 29.3 46.1 80.26 189.8
Las Vegas 47.6 77.3 146.1 392.3

The “Density” column is the density of each dataset (i.e. Den-
sity=#Ratings/(#Users × #Items)). The “Avg.U” column denotes
the average number of visited POIs for each user. The “N.k” column
refers to the average number of geographical neighbors for a POI at
radius k.

It is worth noticing that POI recommendation falls in the category of im-
plicit feedback setting. As a result, most implicit recommendation models can be
used for POI recommendation. For example, the original Bayesian personalized
ranking (BPR) model based on pairwise preference comparison over observed and
unobserved rating pairs. The work in (Rendle et al., 2009a) extended BPR-based
matrix factorization with tensor factorization. They further suggested to apply
adaptive and context-dependent oversampling to replace the uniform sampling
of BPR (Rendle and Freudenthaler, 2014). In (Krohn-Grimberghe et al., 2012;
Zhao et al., 2014), BPR criterion was extended by modeling social relations and
social preference information. However, since these models do not explicitly lever-
age the location information, they may lose important location information and
thus lead to suboptimal recommendations.

5.3 Geo-spatial Preference Analysis
5.3.1 Data Description

A recently released dataset Yelp1 is used for data analysis. We extract data from
two American cities (Phoenix and Las Vegas) and remove users with less than
20 ratings and POIs with less than 5 ratings to reduce noise data2, similarly as
preprocessed in Cheng et al. (2012); Hu et al. (2014); Liu et al. (2015); Shi et al.

1www.yelp.co.uk/dataset_challenge
2The cold-start problem is beyond the concern of this work.

88

5.3 Geo-spatial Preference Analysis

(a) Phoenix (b) Las Vegas

Figure 5.1: The overview of a random user’s multi-center mobility behaviours
on Phoenix and Las Vegas.

(2012b). The basic statistics are shown in Table 5.1.

5.3.2 Motivation

Motivation 1: Our first motivation derives from the Tobler’s First Law of Ge-
ography, which is “Everything is related to everything else, but near things are
more related than distant things” (Tobler, 1970). This implies: (1) a user tends
to visit nearby places (Ye et al., 2011); (2) nearby places potentially have some
relevance (Hu et al., 2014).

Motivation 2: Cheng et al. (2012) observed that users’ check-in traces usually
follows a multi-center distribution. Accordingly, they modelled the probability of
a user’s check-ins on a location as Multi-center Gaussian distribution and then
fused the users’ geographical preference and latent factor together in a unified
framework. Ye et al. (2011) argued that the probability of POI pairs visited by
the same user approximately obeyed power-law distribution with distance.

As a result, two main implications can be derived: (1) users usually visit POIs
close to their activity centers, such as their homes and offices; (2) users may be
interested in exploring POIs near a location they visited before, which have to be
clustered together.

89

5.3 Geo-spatial Preference Analysis

Table 5.2: Ratios of P ′/P .

µ 50 100 200 400 600 1000 2000
Phoenix 44.7 28.8 23.3 18.9 13.6 10.2 8.0
Las Vegas 57.5 53.2 19.1 8.0 4.7 4.1 3.2

5.3.3 Proximity Analysis

We proceed to study if the above intuitive phenomena can be observed on our
datasets. Figure 5.1 depicts the geographical distributions of POIs rated by two
random users. It can be seen that the users’ POIs indeed cluster around several
spatial areas. That is, the above two implications are likely to hold on the Yelp
datasets. Furthermore, we design the following statistical experiments to verify
the intuitions.

Exp1: We randomly pick two POIs (la, lb) from a city (e.g. Phoenix) and calcu-
late the distance d(a,b) between la and lb. We repeat the experiment 10000 times
in order to yield the probability P that the distance d(a,b) is less than a threshold
µ (e.g. µ = 200m, where m is in meter).

Exp2: We randomly pick a user u from the same city in Exp1 and select two POIs
that u has rated before, e.g. (la′ , lb′), then calculate the distance d(a′ ,b′) between
la′ and lb′ . We repeat the experiment 10000 times to calculate the probability P ′

that d(a′ ,b′) is less than the same threshold µ.
Table 5.2 shows the ratios of P ′ to P , which are indicators to demonstrate

the proximity influence of individuals’ rating behaviors. As shown, the ratios are
much greater than 1 with all thresholds ([50, 2000]), which means P ′ is higher
than P , in particular, P ′ is about 20 times larger than P when µ is less than 200m.
This implies that users’ visiting behaviors are highly affected by spatial distance
and that the users’ rated POIs are not geographically independent of each other.
Second, all the ratios decrease with the increase of µ. This is consistent with
intuition since the ratio should be close to 1 if µ is large enough. Moreover,
this observation keeps consistent with our experimental results in Section 5.6.2.
Unlike previous works, we do not model the distribution of multiple spatial cluster
phenomenon directly since it is not proper to assume all users mobility patterns
correspond to a prior distribution, e.g. Gaussian (Cheng et al., 2012) or power-
law (Ye et al., 2010; Yuan et al., 2013) distribution. Nevertheless, the statistical

90

5.4 Preliminaries

analysis implies that an unrated POI surrounded a POI that one prefers is likely
to be more appealing (to her) compared with other faraway and unrated places.
The physical cost is the main difference that distinguishes POI recommendation
from other product recommendations. Thus it becomes feasible to statistically
model this intuition by a two-level pairwise preference comparison1.

Preference rank of a POI one rated >
nearby POIs she unrated >
unrated POIs far away from all rated POIs.

5.4 Preliminaries

First we introduce several concepts used in this chapter and define the research
problem of geo-spatial preference enhanced POI recommendation. Then we
shortly recapitulate the basic idea of Bayesian Personalized Ranking (BPR). Ta-
ble 5.3 lists the notations used in this work.

5.4.1 Problem Statement

In the context of typical POI recommendation, let U = {u}Mu=1 denote the set of
all users, and L = {i}Ni=1 denote the set of all POIs, where M and N represent
the number of users and POIs respectively, i.e. M = |U| & N = |L|. Users’
check-in/rating information is commonly expressed via user-POI check-in/rating
action matrix C, where each entry cui is the frequency or a binary value2 made by
u at i. Generally, the matrix C is extremely sparse (see Table 5.1) since most users
only rate a small portion of POIs. In contrast to other recommendation tasks,
geographical information is available for each POI, which is usually geocoded by
a pair of latitude and longitude.

In our scenario, we define the set of user-POI (u, i) pairs as positive feedback
if the rating behavior of u to i is observed, denoted as L+

u = {(u, i)}. Unlike
previous works (e.g. Rendle et al. (2009b)) that defines the set of unobserved
pairs L\L+

u as negative feedback, we introduce a new geographical feedback by
1We noticed that a two-level assumption has also been applied in Zhao et al. (2014), which however solves

the social recommendation problem with model derivation from a different perspective.
2For item recommendation task, it is common practice to handle explicit rating values as implicit binary

values.

91

5.4 Preliminaries

exploiting POI neighborhood information. In particular, assume we observe a
POI network G = (L,L), where (i, g) ∈ G indicates that i and g are geographical
neighbors. For each rated POI i, there is a neighbor g ∈ L, which has not been
rated by u. The set of (u, g) pairs is defined as geographical feedback, denoted
as LGui = {(u, g)}. Besides, there is a POI j neither rated by u nor a geographical
neighbor of all rated POIs i ∈ L+

u . We define the set of (u, j) pairs as negative
feedback, denoted as L−u = {(u, j)}. For example, the circular area in Figure 5.2
represents the range of geographical neighbors. On the left side, (u, i1) and (u, i2)

are observed rating pairs, i.e. L+
u = {(u, i1), (u, i2)}; (u, g1) and (u, g2) represent

unobserved pairs, where g1 and g2 are neighbors of i1 and i2, respectively, i.e.
LGui1 = {(u, g1)}, LGui2 = {(u, g2)}; (u, j) represents the remaining unobserved
pairs, i.e. L−u = {(u, j)}. On the right side of Figure 5.2, g is a common neighbor
of i1 and i21.

The goal of this work is to recommend each user a personalized ranked list
of POIs from L\L+

u . Motivated by geo-spatial proximity, the key challenge is
to learn individuals’ implicit preference by integrating positive, geographical and
negative feedback.

5.4.2 BPR: Ranking with Implicit Feedback

POIs that a user has never visited are either really unattractive or undiscovered
yet potentially appealing (Lian et al., 2014). This is the key challenge of POI
recommendation based on implicit feedback. To tackle it, Rendle et al. (Ren-
dle et al., 2009b) proposed a well-known ranking-based optimization criterion
Bayesian personalized ranking (BPR) that maximizes a posterior estimation with
Bayesian theory. An intuitive assumption is made: user u prefers item (i.e.
POI in our case) i to item j, provided that (u, i) rating pair is observed
and (u, j) is unobserved, defined by:

r̂uij(Θ) := ŷui(Θ) > ŷuj(Θ), i ∈ L+
u , j ∈ L\L+

u (5.1)

where Θ denotes a set of parameters of a ranking function (i.e. matrix factor-
ization in this work), ŷui(Θ) and ŷuj(Θ) are the predicted score by the ranking
function, r̂uij(Θ) says i is preferred over j by u. Throughout this work, we will

1Further details with Figure 5.2 can also be found in Section 6.4.1.

92

5.5 The GeoBPR Model

Table 5.3: List of notations.

Symbols Meanings
U set of users {u1, u2,...,u|U|}
L set of POIs {i1, i2,...,i|L|}
G geographical network
L+
u set of (u, i) pairs
L−u set of (u, j) pairs
LGui set of (u, g) pairs
Θ model parameters
W users’ latent factor matrix
H POIs’ latent factor matrix
b POI bias
λ, β regularization parameters
η learning rate
k the dimension of latent factors
ŷ the ranking score calculated from decomposed models
r̂ the ranking relations of two POIs rated by user u
d the distance between two POIs

write r̂uij for r̂uij(Θ) to simplify notation, and the same applies to r̂uig(Θ), r̂ugj(Θ),
yui(Θ), yug(Θ) and yuj(Θ). A unique characteristic of BPR is to sort pairwise
preference ŷui and ŷuj instead of regressing a predictor to a numeric value.

5.5 The GeoBPR Model
5.5.1 Model Assumption

The pairwise preference assumption of BPR, holds in practice, empirically pro-
duces much better performance than pointwise prediction methods (Rendle et al.,
2009b). However, we observe that there are two drawbacks in the BPR assump-
tion for POI recommendation tasks: (1) The BPR algorithm is originally designed
for general item recommendations1, where the structure of geo-spatial preference
has not been explicitly considered. Although the factors decomposed from matrix
are sementically latent, there is no evidence showing that the latent space has
included geographical features. Furthermore, leveraging geographical influence
explicitly has been confirmed effectively as in (Cheng et al., 2012; Lian et al.,
2014). (2) A large number of unobserved user-POI pairs cannot be employed for
learning since BPR treats non-positive pairs equally. Thus we believe there is

1An item can be anything, e.g. a book, a song as well as a POI.

93

5.5 The GeoBPR Model

much room for improvement by exploiting geographical proximity influence be-
tween users and POIs. Specifically, we propose a novel assumption by explicitly
modeling the structure of geographical proximity factors.

Figure 5.2: Two scenarios of user-POI pairs.

Assumption-a: As stated in section 5.3.3, individuals tend to visit nearby
places. Hence, we devise an intermediate process to enhance the BPR assump-
tion: user u prefers POI i to POI g, provided that (u, i) rating pair is
observed and (u, g) is unobserved, where g is one of the geographical
neighbors of i; moreover, u prefers g to j, provided that (u, j) is un-
observed and j is not a geographical neighbor of all rated POIs. This
assumption can be formulated as follows:

ŷui > ŷug︸ ︷︷ ︸
:=r̂uig

∧ ŷug > ŷuj︸ ︷︷ ︸
:=r̂ugj

, i ∈ L+
u , g ∈ LGui, j ∈ L−u (5.2)

It can be seen the preference orders of unobserved pairs, i.e. (u, g), (u, j) are now
possible to be compared using our assumption. Thus it seems promising that the
sparsity problem is likely to be alleviated. Moreover, based on this assumption
and the sound transitivity scheme (Rendle et al., 2009b), it is easy to infer as
follows:

ŷui > ŷug︸ ︷︷ ︸
:=r̂uig

∧ ŷui > ŷuj︸ ︷︷ ︸
:=r̂uij

(5.3)

We can see the assumption based on Eq.(5.3) reduces to that of BPR (see
Eq.(5.1)). In other words, the new assumption leads to a more accurate inter-
pretation than typical BPR assumption. Furthermore, the proposed assumption

94

5.5 The GeoBPR Model

balances the contribution between geographical preference and latent factors1.
Note that we cannot infer any preference relation from these pairs: (ŷui1 , ŷui2),
(ŷui1 , ŷug2), (ŷui2 , ŷug1), (ŷug1 , ŷug2)) (see Figure 5.2).

Assumption-b: We are also interested in investigating an opposite assumption
since unvisited POIs near a frequently visited POI are likely to be unattractive.
This is because the user is likely to know about these POIs since they are close
to her frequently visited ones, yet she has never chosen to patronize them before.
This might be a signal that she dislikes them. In other words, geographical
neighbors should be treated more negatively than other unvisited ones. Visiting
frequency here is employed as the confidence of a user’s preference. However, on
the Yelp datasets, each POI has at most one rating by each user. Intuitively,
this assumption may not hold without frequency information. For the sake of
completeness of this work, we also verify the effectiveness of this assumption,
formulated as follows:

ŷui > ŷuj︸ ︷︷ ︸
:=r̂uij

∧ ŷuj > ŷug︸ ︷︷ ︸
:=r̂ujg

, i ∈ L+
u , g ∈ LGui, j ∈ L−u (5.4)

Due to the space limitations, we merely elaborate the derivation process of our
approach with assumption-a and report the final performance of the two assump-
tions in section 5.

5.5.2 Model Derivation

Based on the above assumptions, we employ a maximum posterior estimator to
find the best ranking for a specific user u:

arg max
Θ
P(Θ| >u) (5.5)

where Θ represents a set of model parameters as mentioned before, >u is the
total order, which represents the desired but latent preference structure for user
u. According to Bayesian theory, the P(Θ| >u) can be inferred as:

P(Θ| >u) ∝ P(>u |Θ)P(Θ) (5.6)

where P (>u |Θ) is the likelihood function and P(Θ) is the prior distribution
of parameters Θ. Here three intuitive assumptions are made: (1) Each user’s
rating actions are independent of every other user. (2) The preference ordering

1ŷ is usually computed by a latent factor model, i.e. matrix factorization in this work.

95

5.5 The GeoBPR Model

of each triple of items (i, g, j) for a specific user is independent of the ordering
of every other triple. (3) The preference ordering of (i, g) pair for a specific
user is independent of the ordering of (g, j) one. Based on the assumptions,
Bernoulli distribution over the binary random variable can be used to estimate
the likelihood function as follows:∏

u∈U

P(>u |Θ) =
∏

(u,i,g,j)∈U×L×L×L

P (ŷui > ŷug ∧ ŷug > ŷuj|Θ)δ((u,i,g,j)∈Ds)

· (1− P(ŷui > ŷug ∧ ŷug > ŷuj|Θ))δ((u,i,g,j)/∈Ds) (5.7)

Ds is a poset of >u, which expresses the fact that that user u is assumed to prefer
i over g, and prefer g over j, i.e., Ds =

{
(u, i, g, j)|i ∈ L+

u ∧ g ∈ LGui ∧ j ∈ L−u
}
.

δ(x) is a binary indicator with δ(x) = 1 if x is true and δ(x) = 0, otherwise. Due
to the totality and antisymmetry (Rendle et al., 2009b) of a pairwise ordering
scheme, Eq.(5.7) can be simplified to:∏

u∈U

P(>u |Θ) =
∏

u∈U ,i∈L+u ,g∈LGui

P(ŷui > ŷug|Θ)
∏

u∈U ,g∈LGui,j∈L
−
u

P(ŷug > ŷuj|Θ)

(5.8)
We employ a differential function, e.g., σ(x) = 1

1+e−x
, to approximate the proba-

bility P(.) and map the value to probability range (0, 1). Unlike previous works,
e.g., Rendle et al. (2009b), which assign an equal weight to each training pair, we
design two trivial weight functions, wig and wgj, to relax the pairwise preference
assumption between ŷui and ŷug, ŷug and ŷuj. Specifically, the two estimators can
be derived as:

P(ŷui > ŷug|Θ) =
1

1 + e−wig(ŷui−ŷug)

P(ŷug > ŷuj|Θ) =
1

1 + e−wgj(ŷug−ŷuj)

wig =
1

1 + nig
, wgj =

1

1 + (1 + d)−1

(5.9)

where wig is to control the contribution of sampled training pair (u, i) and (u, g)

to the objective function, nig is the number of rated POIs that are geographical
neighbors of POI g. wig equals 1 if no other rated POI shares g as a geographical
neighbor, and the value decreases if g is a public geographical neighbor. The
reason behind is that the above assumption of pairwise preference may not always
hold in real applications. For example, POI g may be a geographical neighbor of
more than one rated POIs (see right side of Figure 5.2). In this case, a user u may

96

5.5 The GeoBPR Model

potentially prefer an POI g to POI i because g is close to the activity center of u.
Similarly, wgj is used to control the contribution of the training pair (u, g) and
(u, j), d is distance1 between POI g and POI j. This is obvious as the preference
ordering is correlated with the distance value between g and j, e.g. the preference
assumption between (u, g) and (u, j) pairs may not hold if d is small. With the
settings of wig and wgj, the contribution of geographical preference works more
reasonably.

Regarding prior density P(Θ), it is common practice to design a Gaussian
distribution with zero mean and model specific variance-covariance matrix λΘI,

P(Θ) ∼ N (0, λΘI) (5.10)

Finally, we reach the objective loss function of our GeoBPR:
GeoBPR :=argmaxΘP(Θ|Ds) := argminΘ(λΘ||Θ||2

−
∑

u∈U ,i∈L+u ,g∈LGui

lnσ(wig(ŷui − ŷug))

−
∑

u∈U ,g∈LGui,j∈L
−
u

lnσ(wgh(ŷug − ŷuj)))
(5.11)

The prediction function ŷ is modelled by matrix factorization, which is known
to effectively discover the underlying interactions between users and items.

ŷui = Wu ·HT
i + bi =

k∑
f=1

wu,f × hi,f + bi (5.12)

where Wu and HT
i represent latent factors of user u and POI i resp., bi is the

bias term of i2., i.e. Θ = {W ∈ RU×k, H ∈ RL×k, b ∈ RL}. The similar ranking
functions apply to ŷug and ŷuj.

According to Eq.(5.11) & Eq.(5.12), we observe that GeoBPR models the
user’s preference rankings by taking into account two types of factors: (1) due to
the spatial proximity of (i, g) pair, the difference of (ŷui, ŷug) models the preference
relations mostly based on general latent features3, such as users’ latent factors (i.e.
the taste of the user) and POI latent factors (e.g. categories, price, reputation,

1The metric unit of d is 1000 meters.
2Note that the user bias term vananishes for predicting rankings and for optimization as the pairwse

comparison is based on one user level.
3Despite the success of latent factorization models, there is no literature to uncover the specific structure

of latent factors, which is also beyond the scope of this thesis.

97

5.5 The GeoBPR Model

etc.); (2) by explicitly modeling the difference of (ŷug, ŷuj), the factorization
model is likely to learn more about the structure of geo-spatial preference. That
is, by injecting geo-spatial preference and leveraging latent factor models (e.g.
matrix factorization), GeoBPR balances the proximity influence and the latent
features to learn the best personalized rankings.

5.5.3 Model Learning and Sampling

Algorithm 6 GeoBPR Learning
1: Input: Ds, G(L,L)
2: Output: model parameters Θ
3: Initialize Θ with Normal distribution N (0, 0.1)
4: for u ∈ U do
5: Calculate L+

u , LGui, L−u
6: end for
7: repeat
8: for u ∈ U do
9: Uniformly draw (i, g, j) from L+

u , LGui, L−u
10: Calculate cig, cgj, i.e.
11: cig = 1

1+e

ŷui−ŷug
1+nig

· wig, cgj = 1

1+e

ŷug−ŷuj
1+(1+d)−1

· wgj

12: Wu ← Wu + η(cig(Hi −Hg) + cgj(Hg −Hj)− λuWu)
13: Hi ← Hi + η(cigWu − λiHi)
14: Hg ← Hg + η(−cigWu + cgjWu − λgHg)
15: bi ← bi + η(cig − βibi)
16: bg ← bg + η(−cig + cgj − βgbg)
17: bj ← bj + η(−cgj − βjbj)
18: end for
19: until convergence return Θ
20:

Since Eq.(5.11) is differentiable, we adopt the widely used stochastic gradi-
ent descent (SGD) and negative sampling for optimization, such as LambdaFM
(Yuan et al., 2016b) and BoostFM (Yuan et al., 2017). Different from them, the
sampled negative POIs are from two sources: neighbor POIs and distant POIs.
Specifically, for each user u, we randomly select (i, g, j) triples from positive, geo-
graphical and negative feedback, and then iteratively update parameters Θ. The
update equations are given in Algorithm 6. Intuitively, by explicitly leveraging

98

5.6 Experiments

the location information and sampling more informative negative examples, the
performance of BPR may have a chance to be improved. In our experiments, we
empirically verify the performance of our GeoBPR by comparing to the original
BPR. Regarding the computational complexity, we can see that each update rule
is O(k), where k is the number of latent dimensions. The total complexity is
O(T |U|k), where T is the number of iterations. For predicting a user’s preference
on a POI, the complexity is linear O(k). Both learning and predicting processes
do not increase the time complexity in contrast with BPR.

5.6 Experiments
5.6.1 Experimental Setup

Yelp datasets described in section 5.3.1 are used for evaluation. All experiments
are conducted by using the 5-fold cross-validation. That is, we randomly preserve
80% of the dataset as a training set, and leave the remaining portions as a test
set. We report the mean of the five runs as final performance.

5.6.1.1 Baseline Methods

We compare GeoBPR1 with an bunch of state-of-the-art baselines, including
Most Popular (MP), User-based Collaborative Filtering (UCF), MFM, BPR and
NBPR. MP, UCF and BPR have been described in Chapter 3.

• MFM: The basic idea of MFM is to fuse Multi-center features (Cheng et al.,
2012) with Factorization Machines (FM) (Rendle, 2010, 2012). Following
Cheng et al. (2012), we produce several clusters based on a user’s previously
visited POIs and get the average coordinate of each cluster as centroid.
The distance between a candidate POI and each centroid is calculated as
features. Then we apply FM to model users’ latent preference and geo-
spatial influence.

• NBPR: Inspired by Hu et al. (2014), we implement an intuitive baseline
that fuses geographical neighborhood with matrix factorization, and then
adopts BPR criterion for learning. The major difference between GeoBPR

1GeoBPR is short for GeoBPR with assumption-a if no special instructions.

99

5.6 Experiments

Table 5.4: Performance comparison. PX and LV denotes Phoenix and Las
Vegas respectively. GBPRa and GBPRb denote GeoBPR with assumption a and
b respectively.

Metrics MP UCF MFM BPR NBPR GBPRb GBPRa

PX MAP 0.0152 0.0187 0.0153 0.0310 0.0316 0.0095 0.0335
MRR 0.0705 0.0939 0.1129 0.1244 0.1286 0.0507 0.1406

LV MAP 0.0259 0.0372 0.0403 0.0419 0.0426 0.0167 0.0462
MRR 0.0940 0.1422 0.1385 0.1467 0.1484 0.0702 0.1656

and NBPR is that GeoBPR embeds the geographical proximity influence
into the pairwise rank assumption (i.e. objective function), whereas the
NBPR integrates the geographical neighborhood with a more complicated
prediction function.

5.6.1.2 Parameter Settings

GeoBPR has several critical hyperparameters to be tuned:

• Learning rate η: To conduct a fair comparison, we apply the 5-fold cross-
validation to find the best η for BPR (η = 0.05), and then employ the same
value for GeoBPR. For MFM and NBPR, we apply the same procedure to
tune η (η = 0.005).

• Factorization dimension k: We fix k = 30 for all models based on matrix
factorization. The effect of k value will be detailed later.

• Regularization λ, β: In this work, regularization parameters are grouped as
GeoBPR has several parameters: λu represents the regularization parameter
of Wu; λπ represents the regularization parameters of Hi, Hg, Hj (i.e. λi,
λg, λj resp.); βπ represents regularization parameters of bi, bg, bj (i.e. βi,
βg, βj resp.). On Phoenix dataset, λu = 0.03, λπ = 0.03, βπ = 0.05; on Las
Vegas dataset, λu = 0.08, λπ = 0.02, βπ = 0.05.

• Initialization Θ: It is common practice to sample a zero-mean normal dis-
tribution with a small standard deviation σ. We set σ = 0.1.

100

5.6 Experiments

5.6.1.3 Evaluation Metrics

In order to measure the quality of top-N recommendation task, we choose four
standard evaluation metrics, namely Precision@N and Recall@N (denoted by
Pre@N and Rec@N respectively) (Li et al., 2015a), Mean Average Precision
(MAP) (Rendle and Freudenthaler, 2014; Liu et al., 2013) and Mean Recipro-
cal Rank (MRR) (Shi et al., 2012b). For each metric, we first calculate the
performance of each user from the test data, and then obtain the average per-
formance over all users. The higher values MAP, MRR, Pre@N and Rec@N, the
better recommendation performance. Due to the space limitations, we leave out
more detailed descriptions.

5.6.2 Experimental Results
5.6.2.1 Summary of Experimental Results

Table 5.4 and Figure 5.3 present the experimental results of each algorithm in
terms of the four ranking metrics.

We highlight the results of BPR and GeoBPR in boldface for comparison
in Table 5.41. The percentage in ‘Improve’ column represents the accuracy im-
provement of GeoBPR relative to BPR. As shown, BPR, NBPR and GeoBPR
models perform much better than MP, MFM and UCF, which demonstrates the
effectiveness of pairwise preference assumptions. Our approach outperforms the
other baseline methods in terms of all the metrics on both datasets. In partic-
ular, our GeoBPR model achieves about 10% significant improvement compared
to the BPR model in terms of MAP and MRR. The main reason is that BPR
only learns one ranking order between observed and unobserved POI pairs, i.e.
(i, j). While our GeoBPR model learns two orders: rated POI i and nearby POI
g which is unrated, i.e. r̂uig; both unrated POIs g and j, but j is distant from
all rated POIs, i.e. r̂ugj. Intuitively, the assumption r̂uig holds more accurately
than r̂uij in real scenarios; in addition, sparsity problem seems to be alleviated by
the additional assumption r̂ugj. We can thus see that the assumption of GeoBPR
by injecting geo-spatial preference is indeed more effective than that of simple
pairwise preference assumed in BPR. Interestingly, one may observe that NBPR

1Note that the absolute precision and recall are usually very low in the POI recommendation task due to
the huge sparsity of data, which is consistent with previous literature (Zhao et al., 2016b).

101

5.6 Experiments

5 10 20

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

N

P
re
@
N

MP

UCF

MFM

BPR

NBPR

GeoBPR

(a) Phoenix

5 10 20

0.02

0.03

0.04

0.05

0.06

N

P
re
@
N

MP

UCF

MFM

BPR

NBPR

GeoBPR

(b) LasVegas

5 10 20

0

0.02

0.04

0.06

0.08

N

R
ec
@
N

MP

UCF

MFM

BPR

NBPR

GeoBPR

(c) Phoenix

5 10 20

0.02

0.04

0.06

0.08

0.1

N

R
ec
@
N

MP

UCF

MFM

BPR

NBPR

GeoBPR

(d) LasVegas

Figure 5.3: Performance comparison with respect to top-N values in terms of
Pre@N and Rec@N.

50 100 200 400 600 1000 2000

0.04

0.045

0.05

0.055

0.06

µ(m)

P
ec
@
5

BPR-Phoenix

GeoBPR-Phoenix

BPR-Las Vegas

GeoBPR-Las Vegas

(a) Pre@5

50 100 200 400 600 1000 2000

0.02

0.025

0.03

0.035

0.04

µ(m)

R
ec
@
5

BPR-Phoenix

GeoBPR-Phoenix

BPR-Las Vegas

GeoBPR-Las Vegas

(b) Rec@5

Figure 5.4: Performance comparison with different µ.

does not perform much better than BPR by modeling a new prediction function,
i.e. fusing geographical neighborhood with matrix factorization. Our results po-

102

5.6 Experiments

10 30 50 80 100

0.03

0.04

0.05

0.06

k

P
re
@
5

BPR-Phoenix

GeoBPR-Phoenix

BPR-Las Vegas

GeoBPR-Las Vegas

(a) Pre@5

10 30 50 80 100

0.015

0.02

0.025

0.03

0.035

0.04

k

R
ec
@
5

BPR-Phoenix

GeoBPR-Phoenix

BPR-Las Vegas

GeoBPR-Las Vegas

(b) Rec@5

Figure 5.5: Performance comparison with different k.

tential imply that algorithms optimized for rating prediction do not translate into
accuracy improvements in terms of top-N item recommendation. In addition, the
results keep consistent with the findings in (Kothari and Wiraatmadja).

5.6.2.2 Impact of Neighborhood

Table 5.4 shows the prediction quality of GeoBPR with two opposite assumptions,
i.e. assumption-a and assumption-b (denoted by GeoBPRa, GeoBPRb resp.). As
stated in section 5.5.1, assumption-b intuitively cannot hold due to the lack of
frequency information, we can see that GeoBPRb performs the worst over other
approaches. The results, i.e. Pre@5 and Rec@51, are depicted in Figure 5.4.
We observe the general trends are, both metrics increase with the increasing of
threshold µ, when arriving at a certain threshold, the performance starts decreas-
ing with a larger µ. The reason is that the size of nearby POIs (g ∈ LGui) is not
as large as required for training the model2 when µ is small (e.g. µ ∈ [50, 200])
(see Algorithm 6 and Table 5.1). Once the number of training samples is large
enough, the performance of GeoBPR keeps consistent with the ratio value (P ′/
P), i.e. the larger ratio the training samples have, the better recommendation
quality GeoBPR achieves. For example, the ratio on Las Vegas dataset become
smaller when µ is larger than 600m, and accordingly the recommendation accu-
racy degrades rapidly when µ increases. Furthermore, we see GeoBPR always

1The performance on other metrics follows similar trends.
2Once again, we emphasize that the ranking comparison of (i, g) pairs models general latent factors, while

the comparsion of (g, j) explicitly models geo-spatial preference.

103

5.7 Chapter Summary

achieves better performance than BPR on Phoenix dataset when µ in [100, 2000];
on both datasets, it outperform BPR when µ in [100, 600].

With respect to the effect of wig and wgj, we compare GeoBPR with a variant
without using the two weights. We observe that for both datasets, it improves
the performance by the percent in the range of [2.66% , 4.02%], demonstrating
the effectiveness by relaxing the pairwise assumptions. We see the contribution
of geo-spatial preference is clear and the results match our data analysis.

5.6.2.3 Impact of Factorization Dimensions

In this work, we apply a matrix factorization (MF) as the scoring function for
GeoBPR (see section 5.5.2). Thus it is important to investigate the impact of
factorization dimension k to the prediction quality. As shown in Figure 5.5, the
performance of BPR and GeoBPR steadily rise with the increasing number of di-
mensions, which keeps consistent with previous works, e.g., Rendle et al. (2009b).
Furthermore, GeoBPR consistently outperforms BPR with the same number of
dimensions on both datasets; in particular, the performance of GeoBPR in 30
dimensions is comparable with that of BPR in 100 dimensions.

5.7 Chapter Summary

In this chapter, we explored to leverage geographical influence to improve per-
sonalized POI recommendation. We first conducted proximity data analysis on
two real-world datasets extracted from the Yelp Datasets and observed that a
user’s rated POIs tend to cluster together on the map. We argued that users
are likely to visit nearby places. Then, we proposed a co-pairwise ranking model
(GeoBPR) by injecting the geo-spatial preference. The intermediate proximity
preference introduced by geographical feedback leads to a more accurate inter-
pretation than original BPR in the setting of POI recommendation, and makes
the preference ordering of unobserved user-POI pairs possible to be inferred. Due
to the optimal balance of geographical preference and latent factors, GeoBPR
outperformed other state-of-the-art factorization models. Both the theoretical
and empirical results indicated that GeoBPR was a good choice for personalized
POI recommendation task.

104

5.7 Chapter Summary

Although GeoBPR is derived from the pairwise ranking perspective its per-
formance improvements also benefit from the negative sampling strategy to some
extent since the unobserved POIs that are close to the user’s activity center may
contain more important information compared with distant ones. The pairwise
comparison between the observed POI and nearby unobserved POIs is more mean-
ingful than that with distant unobserved POIs. Hence, from this perspective, the
work of GeoBPR can also support our thesis statement (1) and statement (2),
although its main contribution does not concentrate on developing negative sam-
pling methods.

105

Part III
Batch Gradient with All Samples

Stochastic gradient descent (SGD) with negative item sam-
pling is the most prevalent optimization technique for rec-
ommendation with large-scale implicit feedback data, as dis-
cussed in the last three chapters. However, the training time
and effects of SGD depend largely on the sampling distribu-
tion of negative examples. Sampling a small fraction of un-
observed examples as negative for training may ignore other
useful examples, or lead to insufficient training of them. More-
over, the high variance of stochastic samples tends to cause
the learning fluctuate heavily in the vicinity of a global/local
optimum. To address the issue, we derive a fast batch gradi-
ent decent (fBGD) for learning generic recommendation mod-
els from whole implicit data. Experiments on real-world data
sets demonstrate the efficacy of fBGD, which not only achieves
a 400−1, 000x speed-up over BGD, but also significantly out-
performs state-of-the-art SGD baselines.
This part studies systematically the impact of negative sam-
pling based method and empirically compares it with whole
data based method. It provides supports for all the state-
ments in Chapter 1.

106

Chapter 6

Fast Batch Gradient Descent

In Part II, we have shown that stochastic gradient descent (SGD) with negative
item sampling is the most prevalent optimization technique for recommendation
with large-scale implicit feedback data. However, the training time and effects
of SGD depend largely on the sampling distribution of negative examples. To
address the issue, we derive a fast batch gradient descent fBGD for learning generic
recommendation models from whole implicit data. The key design is based on a
series of optimized mathematical derivation of the objective function. In addition,
we demonstrate that the standard batch gradient method suffers from gradient
exploding and vanishing issues when learning complex recommender models due
to large batched summation of sparse features. Driven by a theoretical analysis
for this potential cause, an easy solution arises in a natural way. Experiments on
real-world data sets demonstrate the efficacy of fBGD, which not only achieves a
400−1, 000x speed-up over BGD, but also significantly outperforms state-of-the-
art SGD baselines.

This chapter is mainly based on our recent work “fBGD: Learning Embed-
dings From Positive Unlabeled Data with BGD” published in The Conference on
Uncertainty in Artificial Intelligence (UAI) 20181. A special case paper “Batch
IS NOT Heavy: Learning Word Representations From All Samples” for the word
embedding task was published in Annual Meeting of the Association for Compu-
tational Linguistics (ACL) 20182.

1Copyright: c○ 2018 UAI. Reprinted, with permission, from Yuan et al. (2018b)
2Copyright: c○ 2018 ACL. Reprinted, with permission, from Xin et al. (2018)

107

6.1 Introduction

1 2 4 8 16 64

0.03

0.04

0.05

0.06

sampling size of unobserved instances

N
D

C
G

@
10

SGD

(a) Accuracy

1 2 4 8 16 64

1

5

10

15

20

25

sampling size of unobserved instances

N
or

m
al

iz
ed

 tr
ai

ni
ng

 ti
m

e

SGD

(b) Training time

Figure 6.1: Impact of negative item sampling on SGD on the Last.fm data set.
The x-axis is the number of sampled negative items for each positive one. Better
accuracy (a) can be obtained by sampling more negative instances at the expense
of longer training times (b). More details on the experimental settings are given
in Section 6.6.

6.1 Introduction

Learning a recommendation model from implicit feedback is challenging, primar-
ily due to the lack of negative feedback. While a common strategy is to treat
the unobserved feedback (i.e. missing data) as a source of negative examples (He
et al., 2017), the technical difficulties cannot be overlooked: (1) the ratio of pos-
itive to negative feedback in practice is highly imbalanced (Pan et al., 2008; Hu
et al., 2008), and (2) learning through all unobserved feedback (which is usually
billion to trillion level) is computationally expensive (Yuan et al., 2016b).

The SGD with negative item sampling is the most widely used optimization
method to solve the large-scale implicit feedback recommendation problem (Pan
et al., 2008; Rendle and Freudenthaler, 2014; Zhang et al., 2013; Liu et al.; Mikolov
et al., 2013; Yuan et al., 2016b), particularly for complex embedding (or factor-
ization) models such as Factorization Machines (FM) (Rendle, 2012; Hong et al.,
2013; Yuan et al., 2017) and SVDfeature (Chen et al., 2012). Despite its success,
it is known that SGD may perform frequent gradient updates with a high vari-
ance, which can cause the objective function to fluctuate dramatically near the
global/local optimum (Ruder, 2016). More importantly, the training time and
prediction accuracy are largely determined by the sampling size and distribution
of negative examples, as shown in Figure 6.1. In fact, sampling methods are

108

6.2 Related Work

biased (Blanc and Rendle, 2017), i.e., it does not converge to the same loss with
full-sample — regardless how many update steps are taken. This is our main mo-
tivation in this work. It is known that batch gradient descent (BGD) computes
the gradient on the whole training data for updating a model parameter. As
such, the learning process can converge to a better optimum (Pearlmutter, 1992).
Unfortunately, although BGD has a more stable convergence, the low efficiency
caused by the full batch process makes it almost non-scalable to data with a large
number of users and items, and thus is much less explored in literature.

In this chapter, the main contribution is in the deriving of an efficient BGD
learning algorithm fBGD — which addresses the computational difficulty of the
standard BGD — for learning generic recommender models from implicit feed-
back. Unlike SGD based models that rely on sampling negative feedback data,
fBGD takes the whole implicit data as input, but only has a comparable com-
plexity with negative sampling based SGD. This is realised by a series of rigorous
mathematical reasonings in theory and the clever use of memoization strategies.
The second contribution is that we provide insight as to why the BGD is prone
to the gradient exploding and vanishing problem when the embedding model in-
corporates features beyond user ID and item ID. An intuitive solution can be
applied once we understand the cause. To our knowledge, neither of the two
contributions has been made before. In our experiments, we perform a rigorous
study and comparison between negative sampling based stochastic gradient mod-
els and whole data based batch gradient model. Our findings demonstrate both
the significantly improved recommendation accuracy and superior scalability of
fBGD.

6.2 Related Work

Gradient methods are one of the most popular algorithms to perform optimization
in the practice of machine learning. They have also been widely used for training
Collaborative Filtering (CF) models, and have almost dominated the optimization
field for embedding models (Koren et al., 2009; Rendle et al., 2009b; Zhao et al.,
2014; Mikolov et al., 2013; Hong et al., 2013; Chen et al., 2012; Rendle, 2012;
Li et al., 2015b; Yuan et al., 2016b). So far the most commonly used gradient

109

6.2 Related Work

optimization method is SGD or a compromise MGD (mini-batch gradient descent)
(Mikolov et al., 2013; Wang et al., 2017a), which attempts to approximate the
true gradient by a single or a mini-batch of instances with sampling techniques.
However, the balance between computing the expensive true gradient based on the
whole batch and the immediate gradient based on a single instance could easily
result in suboptimal performance. More importantly, on large data the sampling
size and quality for SGD/MGD also significantly affect the convergence rate and
prediction accuracy. In particular for recommender systems, it is non-trivial to
sample from large and highly imbalanced implicit feedback data. Most works deal
with this issue by proposing a certain trade-off between efficiency and accuracy.
For example, various sampling methods have been proposed in recent literature
(Pan et al., 2008; Rendle and Schmidt-Thieme, 2010; Weston et al., 2012; Zhao
et al., 2014; Zhang et al., 2013; Mikolov et al., 2013; Hong et al., 2013; Yuan
et al., 2016b, 2017; Wang et al., 2017a). The basic idea behind this is to select
the most informative instances for an SGD/MGD trainer which, however, easily
leads to bias itself. Moreover, all aforementioned works either expose efficiency
issues with a dynamic sampler (Weston et al., 2012, 2013; Zhang et al., 2013;
Hong et al., 2013; Li et al., 2015b; Yuan et al., 2016b) or result in suboptimal
training instances with a uniform (Rendle et al., 2009b; Rendle and Schmidt-
Thieme, 2010; Liu et al.) or static (defined before optimization) sampler (Pan
et al., 2008; Zhao et al., 2014; Mikolov et al., 2013; Hidasi et al., 2015; Yuan et al.,
2017) in practice.

It is worth mentioning that the fBGD method is inspired from the extensive
empirical studies on previous works (He et al., 2016c; Bayer et al., 2017). The
main difference is that He et al. (2016c) worked on the simple matrix factorization
model, which cannot be used to incorporate other features, such as contextual
variables associated with each observed example. While the alternating least
squares (ALS) method proposed in Bayer et al. (2017) can be applied to any
k-separablel1 mode, it requires to estimate the second-order derivatives to apply
the Newton update and only supports a constant weight on unobserved examples;
moreover, our empirical evidence shows that training with Newton update is
very sensitive to initialization point and the regularization term, and sometimes

1In essence, the concept of k-separable is to describe a model with a dot product structure.

110

6.3 Preliminaries

is highly unstable due to some gradient issues, especially for embedding models
(e.g., FM and SVDFeature) with many input features. By contrast, our fBGD only
employs the first-order derivatives and supports fine-grained weighting scheme for
unobserved examples.

6.3 Preliminaries

In this section, we discuss in depth the standard batch gradient optimizer for
learning embedding models from implicit feedback, and highlight the inefficiency
issues of the standard form of BGD. Note that the formulation of the embedding
models is slightly different from that in LambdaFM (Chapter 3) and BoostFM
(Chapter 4), which are based on the optimization of SGD.

6.3.1 The Generic Embedding Model

Let U denote a set of user-fields and I a set of item-fields. In implicit feedback
data, there are a set of observed (user-field, item-field) actions S and unobserved
actions (U × I)\S. We define xUu as a feature vector that describes a user-field
u with pU real-valued features, and xIi ∈ RpI as the item feature vector of i
with pI features. We can then store the feature data for all users and items in
matrix XU ∈ R|U |×pU and XI ∈ R|I|×pI respectively, where |U | and |I| denote
the number of distinct user- and item-fields, respectively. See Figure 6.2 for an
illustration. Accordingly, any input feature vector x in training data XS ∈ R|S|×n

(m = pU + pI) can be represented as x = (xUu ,xIi).
Here, we first propose to optimize a general feature-based embedding model

(Chen et al., 2012) that is given below, which can be used in various recom-
mendation tasks, such as collaborative filtering (CF) and context/content-based
recommendations. Then we introduce the generality of fBGD by identifying a
similar structure.

ŷui(x) = w0 +
n∑
d=1

wdxd +
k∑

f=1

(

pU∑
j=1

xUu,jv
U
j,f)(

pI∑
j=1

xIi,jv
I
j,f) (6.1)

where wd is the d-th element inw ∈ Rn, and vUj,f is the element of the j-th row and
f -th column in VU ∈ RpU×k, similarly for vIj,f , xUu,j, and xIi,j. w0, wd, vd,f are the
model parameters to be estimated, i.e., Θ = {w0, w1, ..., wn, v1,1, ..., vn,k}={w0,w,V }.

111

6.3 Preliminaries

Figure 6.2: The structure of sparse input matrix and dense embedding matrix
for user-fields. XU (left) denotes the user-field matrix with only user IDs; XU

(right) denotes the user-field matrix with both user IDs and additional context
variables; (VU)T is the transpose of VU .

The computation of Eq.(6.1) is O(k ·(pU+pI)). Note that (1) Eq.(6.1) only mod-
els interactions between user- and item-fields, which is different from factorization
machines (FM) (Rendle, 2012) modeling all pairwise interactions; (2) we empiri-
cally find that fBGD with Eq.(6.1) shows slightly better performance than fBGD
with FM. That means, the pairwise interaction of FM may bring additional noise
in practice when there are many useless features. Hence, in the following, we
introduce fBGD based on Eq.(6.1).

6.3.2 Optimization with BGD

The task of item recommendation is to estimate parameters of the above scoring
function, which is then used for item ranking. Thus, we propose to optimize a
popular squared loss (i.e., Eq. (2.18)), which contains losses from all positive and
negative examples.

J(Θ) =
∑

(u,i)∈S

α+
ui(y

+
ui − ŷui)

2

︸ ︷︷ ︸
JP (Θ)

+
∑

(u,i)∈(U×I)\S

α−ui(y
−
ui−ŷui)

2

︸ ︷︷ ︸
JM (Θ)

(6.2)

where JP (Θ) and JM(Θ) denotes the errors of positive and unobserved data, α+
ui

and α−ui are the weight functions. Unlike the SGD-based models typically fed

112

6.4 fBGD

with the same order of magnitude positive and negative examples, the weighting
scheme for BGD is important to solve the imbalanced-class problem.

Eq.(6.2) can be minimized by BGD, which computes the gradient of the ob-
jective function w.r.t. θ ∈ Θ for the entire samples:

θ ← θ − γOθJ(θ) (6.3)

where γ is the learning rate, and OθJ(θ) is the first derivative (gradient) w.r.t.
θ, given below:
OθJ(θ) = 2

(∑
(u,i)∈S

α+
ui(y

+
ui − ŷui(θ))Oθŷui(θ) +

∑
(u,i)∈(U×I)\S

α−ui(y
−
ui − ŷui(θ))Oθŷui(θ)

)
(6.4)

where Oθŷui(θ) is the first derivative of ŷui(θ).

6.3.3 Efficiency Challenge

As can be seen, the second term JM(Θ) in Eq.(6.2) dominates the computational
complexity. Specifically, the loss in Eq.(6.2) has almost O(|U | · |I| · Tpred) time
because |I+

u | � |I|, where I+
u is the set of positive items for u. Similarly, updating

a parameter, e.g., vUj,f , in Eq.(6.4) has almost ñ · |I| ·O(Tpred) time, where ñ is the
number of user-fields that have a non-zero value of xUu,j. Accordingly, the total
cost by iterating over all vUj,f in VU in each iteration becomes pU ·n · |I| ·O(Tpred),
where n is the average of all ñ. Clearly, the standard way to calculate the loss and
gradient of BGD is computationally infeasible, because both |U | · |I| and |pU | · |I|
can easily reach billion to trillion level (see Table 6.1). To handle the huge
computation of BGD, most previous literature resorts to SGD with a negative
item sampling technique for (u, i) ∈ (U×I)\S, such as in Pan et al. (2008); Rendle
et al. (2009b); Zhang et al. (2013); Mikolov et al. (2013); Hong et al. (2013); Yuan
et al. (2016b, 2017); Wang et al. (2017a), where the efficiency and effectiveness of
learning algorithms depend highly on the size and quality of sampled data. We
defer the discussion of these sampling methods to the experiments section.

6.4 fBGD

The main contribution in this section is to derive an efficient BGD for general
recommendation problems.

113

6.4 fBGD

6.4.1 Partition of the BGD Loss

As analyzed above, the major computation lies in the minimization of the sec-
ond term in Eq.(6.2). In implicit feedback scenarios, each user-field u has its
standalone unobserved item-field set I−u . As such, an optimization algorithm
basically needs to iterate through all elements in I−u , and repeat the operation
for all u ∈ U , which produces in the main computational bottleneck. To solve
the problem, we first conduct a partition operation on the standard loss, which
serves as a prerequisite for the efficient computation. The key idea1 is that the
prediction errors of unobserved data can be naturally reformulated as the residual
between the errors on all (u, i) pairs and that of observed (u, i) pairs.

JM(Θ) =
∑
u∈U

∑
i∈I

α−ui(y
−
ui − ŷui(θ))

2 −
∑

(u,i)∈S

α−ui(y
−
ui − ŷui(θ))

2

(6.5)

By plugging Eq.(6.5) into Eq.(6.2), we obtain a new objective function that has
a more clear structure — the correspondence relation between u and I−u is elimi-
nated. To further simplify it, we merge the two terms that contain observed (u, i)

pairs into a single term. Note that y+
ui, y

−
ui, α

+
ui, α

−
i are independent of θ ∈ Θ.

J(Θ)=−
∑

(u,i)∈S

α+
uiα
−
ui(y

+
ui − y−ui)2

(α+
ui − α−ui)

2︸ ︷︷ ︸
const

+
∑
u∈U

∑
i∈I

α−ui(y
−
ui − ŷui(θ))

2

︸ ︷︷ ︸
JA(Θ)

+
∑

(u,i)∈S

(α+
ui − α−ui)

(
ŷui(θ)−

α+
uir

+
ui − α−uir−ui
α+
ui − α−ui

)2

︸ ︷︷ ︸
JP (Θ)

(6.6)

where JA(Θ) and JP (Θ) denote the loss for all (u, i) pairs and positive (u, i) pairs
respectively; const denotes a Θ-invariant constant value. It can be seen that
the loss of unobserved data has been eliminated. Instead, the new computation
complexity lies in J̃A(Θ), which is part of JA(Θ), defined as:

J̃A(Θ) =
∑
u∈U

∑
i∈I

α−uiŷui(θ)
2 − 2r−

∑
u∈U

∑
i∈I

α−uiŷui(θ) (6.7)

Now we proceed to introduce the second key design that is based on the com-
mutative property of nested sums and the constant-pullout operation. So far,
we have ignored how ŷui(θ) is computed. In the following, first we assume that

1The idea is similar to that used in He et al. (2016c), which can only solve the basic matrix factorization
model based on a different optimization method (i.e., alternative least square).

114

6.4 fBGD

ŷui(θ) can be denoted by a dot product between a compressed user- and item-field
embedding vector. Then we show how to construct the form of dot product for
Eq. (6.1) and other embedding models.

Assuming ŷui(θ) = 〈pu,qi〉 =
∑g

f=1 pu,fqi,f , Eq. (6.7) can be rewritten as:

J̃A(Θ) =
∑
u∈U

∑
i∈I

α−ui

g∑
f=1

pu,fqi,f

g∑
f ′=1

pu,f ′qi,f ′ − 2r−
∑
u∈U

∑
i∈I

α−ui

g∑
f=1

pu,fqi,f (6.8)

where we observe that there exists a very nice structure in above equation — if
α−ui is a constant value or a value only associates with u or i but not (u, i) pair.
Considering that there is no observed (u, i) interaction in unlabeled examples, it
is reasonable to set α−ui as α−u or α−i . The simplified weight design is a necessary
condition for efficient optimization in the following. Here we continue to discuss
the algorithm, assuming α−ui = α−i , and later show how to design a good weighting
scheme. We can now show the rearrangement manipulation for the summation
operator and “constant” variables in the dot product as below:

J̃A(Θ) =

g∑
f=1

g∑
f ′=1

∑
u∈U

pu,fpu,f ′
∑
i∈I

α−i qi,fqi,f ′ − 2r−
g∑

f=1

∑
u∈U

pu,f
∑
i∈I

α−i qi,f (6.9)

The rearrangement of nested sums in Eq.(6.9) is the key transformation that al-
lows the fast optimization of fBGD, as the major computation— the

∑
i∈I α

−
i qi,fqi,f ′

and
∑

i∈I α
−
i qi,f terms that iterate over all i ∈ I — are independent of u. In other

words, we can achieve a significant speed-up (i.e. from O(|U ||I|g) in Eq.(6.8) to
O((|U | + |I|)g2) in Eq.(6.9)) by pre-computing them. Optimization details re-
garding the gradient computation are given in Section 6.4.3.

6.4.2 Constructing a Dot Product Structure

As discussed above, we need to construct the dot product function for embedding
models if they are not an explicit dot product structure. To transform Eq. (6.1)
to the dot product structure 〈pu,qi〉, we just need to decompose it as1:

g∑
f=1

pu,fqi,f (6.10)

1The decomposition idea here is inspired by Rendle and Freudenthaler (2014), which solves the sampling
problem.

115

6.4 fBGD

where g = k + 2 and

pu,f =

pU∑
j=1

xUu,jv
U
j,f , qi,f =

pI∑
j=1

xIi,jv
I
j,f

pu,k+1 = w0 +

pU∑
j=1

wjx
U
u,j , qi,k+1 = 1

pu,k+2 = 1 , qi,k+2 =

pU+pI∑
j=pU+1

wjx
I
i,j−pU

(6.11)

As we can see, Eq. (6.11) is mathematically equal to Eq. (6.1). In fact, we notice
that the dot product structure widely exists in many embedding modes. Here,
we show the dot product structure in another two popular models:
(1) Regarding the basic matrix factorization (MF) (Koren et al., 2009; Mikolov
et al., 2013) mode (also see Eq. (2.2) in Chapter 2 for more details), it is defined
as follows in the context of this chapter:

ŷui(θ) =
k∑

f=1

vUj,fv
I
j′,f (6.12)

clearly, MF is an an explicit dot product structure. If we express it by
∑g

f=1 pu,fqi,f ,
we have g = k and

pu,f = vUj,f , qi,f = vIj,f (6.13)
(2)The Pairwise Interaction Tensor Factorization (PITF) (Rendle and Schmidt-
Thieme, 2010) is defined as follows in the context of this chapter:

ŷui(θ) =

k∑
f=1

vUj,fv
V
j′,fv +

k∑
f=1

vUj,fv
I
j′′,f +

k∑
f=1

vVj′,fv
I
j′′,f (6.14)

If we express it by
∑g

f=1 puv,fqi,f , we have g = k + 1 and

puv,f = vUj,f + vVj′,f , qi,f = vIj′′,f

puv,fk1 =
k∑

f=1

vUj,fv
V
j′,f , qi,k+1 = 1

(6.15)

6.4.3 Efficient Gradient

Once we have achieved the efficient loss function, it is trivial to calculate the
gradient computation. Here, we show the gradient computation of Eq. (6.9). By
a similar transformation, fBGD can be directly extended to MF and PITF. We

116

6.4 fBGD

define the Sqff ′ and Sqf caches as Sqff ′ =
∑

i∈I α
−
i qi,fqi,f ′ and Sqf =

∑
i∈I α

−
i qi,f

respectively, which can be pre-computed and used for the update of all user-field
related parameters, i.e. wj(j < pU) and vUj,f . We now present the formulation for
the gradient calculation.

OθJ̃A(θ) = 2

g∑
f=1

g∑
f ′=1

Sqff ′
∑
u∈U

pu,f ′Oθpu,f − 2r−
g∑

f=1

Sqf
∑
u∈U

Oθpu,f (6.16)

where

Owjpu,f =

xUu,j f = k + 1

0 otherwise
, OvUj,f

pu,f =

xUu,j f ≤ k

0 otherwise
(6.17)

First, it is clear that when computing both OvUj,f
J̃A(θ) and Owj J̃A(θ), one of

nested sums in Eq.(6.16), (e.g.,
∑g

f=1) will vanish. Second, the computation of
sums over user-fields u ∈ U can be accelerated by only iterating over u where
xUu,j 6= 0; Last, pu,f ′ is able to be precomputed to reduce the cost. Although
pu,f ′ changes when updating θU , it can be updated in synchronization with the
changes in θU , denoted by 4θU .

pu,f ′ ← pu,f ′ + xUu,j4θU = pu,f ′ − xUu,jγOθJ(θ)576s20032h (6.18)

The total time complexity of OθJA(θ) (or OθJ̃A(θ)) in one iteration for all param-
eters is O(g2(N(U) +N(I))), where N(U) and N(I) are the number of non-zero
elements in XU and XI . Finally, the efficient computation for θU is given as
follows1:

θU ← θU − γ(OθUJA(θ) + OθUJp(θ)) (6.19)
The optimization process of θI is near-symmetric to θU , except that the

weighting scheme α−i is inside the item-field sum. For example, we define the
Spff ′ and Spf caches as Spff ′ =

∑
u∈U pu,fpu,f ′ and Spf =

∑
u∈U pu,f respectively,

and derive:

OθJ̃A(θ) = 2

g∑
f=1

g∑
f ′=1

Spff ′
∑
i∈I

α−i qi,f ′Oθqi,f − 2r−
g∑

f=1

Spf
∑
i∈I

α−i Oθqi,f (6.20)

where Oθqi,f can be calculated by the same way. Algorithm 7 summarizes the
accelerated algorithm for the efficient BGD.

1OθU Jp(Θ) is the gradient of positive loss, which can be calculated by the standard way with |I+u | ·O(Tpred)
complexity.

117

6.4 fBGD

Algorithm 7 fBGD Learning

1: Input: XS, γ, λθ, Cache vectors sq, sp, Cache matrices P, Q, Sq, Sp;
2: Output: Θ = (w,VU ,VI)
3: Initialize Θ: w← (0, ..., 0); VU ,VI ∼ N (0, 0.01);
4: for e = 1, ...,maxiter do
5: for f ∈ {1, .., k + 2} do
6: for u ∈ U do
7: Compute pud, store in P (P ∈ R|U |×(k+2))
8: end for
9: Repeat line 6 to 8 for item-fields

10: end for
11: for f ∈ {1, .., k + 2} do
12: Compute Sqf , store in sq, (sq∈R(k+2))
13: for f ′ ∈ {1, .., k + 2} do
14: Compute Sqff ′ , store in Sq, (Sq∈R(k+2)×(k+2))
15: end for
16: end for
17: for j ∈ {1, .., pU} do
18: for f ∈ {1, .., k + 2} do
19: Compute OθUJA(Θ),OθUJp(Θ)
20: Update θU as in Eq.(6.19)
21: Update pu,f ′ as in Eq.(6.18)
22: end for
23: end for
24: Repeat line 11 to 23 for item-fields
25: end for

6.4.4 Effective Weighting on Missing Data

In the previous section, we provided the basic description of the speed-up pro-
cess for BGD. In what follows, we take a closer look into the tailored item-wise
weighting scheme on training data.

First, for the weight of a positive instance α+
ui, any reasonable weighting

scheme could be adopted in fBGD which does not affect the analyzed compu-
tation. For example, it is convenient to design a scheme by accounting for users’
observation frequency information such as in Hu et al. (2008). In this work, we
simply set α+

ui = 1 for all observed entries, since each (u, i) pair has only one entry
in our data set. However, in terms of α−ui, it is non-trivial to assign an individu-
alized weight α−ui for each unobserved feedback, due to the high space complexity

118

6.4 fBGD

of O(|U | · |I|) for storing them. Hence, most previous works (Hu et al., 2008;
Devooght et al., 2015; Volkovs and Yu, 2015; Pilászy et al., 2010) tend to employ
a simple uniform weight on all unobserved feedback

As has been discussed, either a user-wise (α−ui = α−u) or an item-wise (α−ui =

α−i) weighting scheme can guarantee the efficient optimization of BGD. How-
ever, we did not observe significantly improved performance by using the user-
wise weighting scheme. Hence, we focus on introducing the item-wise weighting
scheme. Our implementation is originally motivated by the popularity-based neg-
ative sampling technique in the skip-gram model (Mikolov et al., 2013) for the
natural language processing domain. The basic idea is that high-frequency items
in unobserved feedback are more likely to be truly negative, as they are more
likely to be exposed to users. While similar ideas have also been considered in
previous works (Hidasi et al., 2015; Yuan et al., 2016b, 2017), these methods
typically either employ an item frequency based oversampling scheme, which is
tailored for the SGD/MGD or optimize a simple MF model only (Pilászy et al.,
2010), which is a special case of our algorithm. Evidently, the sampling techniques
do not naturally fit our model, as fBGD takes for full batch training data into
account instead of sampled data. Therefore, we believe that an item frequency
based weighting scheme is a more reasonable approach for our optimization set-
ting. Specifically, we assign a larger weight for the unobserved data with high
item frequency, and a smaller weight otherwise.

α−i = α0
(e

pi
|S| − 1)ρ∑|I|

i=1(e
pi
|S| − 1)ρ

(6.21)

where pi denotes the occurrence frequency for item i, given by the number of ob-
servations in the observed set S, and α0 controls the overall weight of unobserved
data to solve the imbalanced-class problem as mentioned in the introduction sec-
tion. The exponent ρ controls the weight distribution, which should be tuned for
different data sets. Note that by setting ρ = 0 the item-wise weighting scheme is
reduced to a uniform one, as discussed before.

119

6.5 Improved fBGD

0 10 50 100 200 300 400 600

0

0.03

0.06

0.09

0.12

0.15

0.18

training iteration e

N
D

C
G

@
10 Improved fBGD g =0.05

fBGD g =0.00005
fBGD g =0.00001
fBGD g =0.000001

Figure 6.3: Performance of the improved fBGD (Section 6.5.2) and standard
fBGD on Last.fm with four features. For the standard fBGD, some gradients
will be evaluated as infinite (NaN) when γ > 5 × 10−5. As can be seen, fBGD
with vanishing gradient performs poorly on Last.fm even by carefully tuning the
learning rate.

6.5 Improved fBGD

So far, we have discussed the fBGD framework and found that by fine-tuning its
hyper-parameters we can achieve a promising performance for the classical CF
setting (with only user ID and item ID as features), in terms of both efficiency and
effectiveness. However, we observe unreliable results on settings where there are
rich contextual features besides user ID and item ID, as evidenced in Figure 6.3.
A novel contribution here is to reveal why unstable gradient issues will occur for
fBGD when modelling more features.

6.5.1 Gradient Instability Issue in CF Settings

While the unstable gradient (i.e., the gradient exploding and vanishing) problem
has been observed when training deep neural networks (Le and Zuidema, 2016),
our predictive model is a shallow embedding (with one hidden layer only). There-
fore, the cause of the unstable gradient issue in our case is fundamentally different
from that in the existing deep layer models, in the sense that in deep models un-
stable gradients occur mainly due to cumulative multiplying of small/big numbers
from previous layers, whereas in fBGD it is caused by the large batched summa-

120

6.5 Improved fBGD

tion of sparse features. We expect the following theoretical analysis and solution
could provide practical guidelines for the future development of recommender
systems based on the BGD framework.

To understand the abnormal behavior of gradient instability, we need to first
revisit the form of gradients. We continue to take the derivation of vUj,f as an
example.

OvUj,g
JA(θ) = 2

k∑
f ′=−1

Sqff ′
∑
u∈U

pu,f ′x
U
u,j − 2r−Sqf

∑
u∈U

xUu,j (6.22)

OvUj,f
JP (θ) = 2

∑
u∈U

∑
i∈I+u

(α+
ui− α−i)

(
ŷui(θ)−

α+
uiy

+
ui−α−i y−ui

α+
ui − α−i

)
qi,fx

U
u,j (6.23)

Due to the data sparsity in CF settings, to compute
∑

u∈U x
U
u,j we only need to

consider the user-field u ∈ U that has a non-zero xUu,j (note that for a feature
j, most user-fields u have xUu,j equal to zero which can be safely ignored). Let
lj be the number of non-zero elements in the j-th column of XU . In Figure
6.2, we highlight the non-zero elements in XU as red, green and blue for j =

{1, 2, pU} respectively. As can be seen, the number of non-zero elements lj in
XU(left), defined as lj(XU(left)), equals 1 for all j ≤ pU . lj(XU(right)), however,
is associated with j as XU(right) stores multiple sparse features. For example, in
Figure 6.2 we have

lj(XU(right)) =

6, j = 1

1, j = 2

5, j = pU

(6.24)

In real-world data sets, the number of rows in XU (i.e. |U |) can easily scale
to that of million or even billion rows and, therefore, it is very likely that lj
has distinct magnitudes for a different column j. Moreover, we observe that
in Eq.(6.23) there is another summation

∑
i∈I+u , which represents the size of

observed feedback for u. The component value of
∑

u∈U
∑

i∈I+u x
U
u,j in Eq.(6.23)

varies from 1 to |U | · |I|, assuming XU is a binary matrix. This indicates the value
of Eq.(6.23) may be unstable: OvUj,f

JP (θ) can be too large for a denser feature j
that is accompanied by a large

∑
u∈U

∑
i∈I+u x

U
u,j (e.g., = 106), while it may be

too small for a sparser feature with a small
∑

u∈U
∑

i∈I+u x
U
u,j(e.g., = 1). Similarly,

the overall gradient OθJ(θ) in Eq.(6.19) has the same unstable problem. In this

121

6.5 Improved fBGD

case, a uniform learning rate γ is no longer suitable because OθJ(θ) with a larger∑
u∈U

∑
i∈I+u x

U
u,j is likely to explode (i.e. OθJ(θ) = NaN) if using a large γ, while

OθJ(θ) with a smaller
∑

u∈U
∑

i∈I+u x
U
u,j may vanish (i.e. OθJ(θ) ≈ 0) if using

a small γ. Generally, it is hard or even impossible to find a medium learning
rate that balances reasonably well in both conditions. To gain more insight into
the performance of fBGD with unstable gradients, we show results with different
learning rates in Figure 6.3.

Interestingly, we empirically find that on data sets with only user ID and
item ID, the gradient instability problem may be avoided by carefully tuning
γ. In other words, by many trials with different learning rates, fBGD is able to
offer reasonable results. However, on data sets with more feature variables (e.g.,
Last.fm), the outputs of fBGD are prone to the NaN error. This is because in
the pure CF setting, the nested summation

∑
u∈U can be dropped since only a

user ID variable is available. As such, although the gradient instability issue may
still happen because of

∑
i∈I+u , it is less severe because the value of |I+

u | is much
smaller than that of lj ·|I+

u |. The same analysis is also applicable to the parameter
estimation associated with item-fields.

6.5.2 Solving the Unstable Gradient Problem

The above theoretical analysis for gradient estimation over all data suggests that
the same learning rate does not hold for all model parameters due to the large
batched summation in sparse data. Analytically, by assigning a specific learn-
ing rate for each parameter update, we can contain the unstable gradient to a
certain extent. Considering this, one possible solution like the one proposed in
Adagrad (Duchi et al., 2011), would be to apply a heavy penalisation by using
a smaller learning rate for OθJ(θ) if θ has larger historical gradients during the
past training iterations, and vice versa.

Considering that Adagrad is mostly applied to stochastic gradient method for
accelerating the convergence of deep neural models, here we only demonstrate how
it can be applied on the full gradient method to address the gradient instability
issue. Denoting γt as the learning rate for the t-th update, we then assign a

122

6.6 Experiments

personalized learning rate for each parameter θ:

γt(θ)=
γ

Gt(θ)
, Gt(θ) =

OθJ(θ)t + ε Gt(θ) = 0√∑
t=1(OθJ(θ)t)2 Gt(θ) 6= 0

(6.25)

where OθJ(θ)t is the gradient w.r.t. θ for the t−th update, GT (θ) is the accu-
mulation of historical gradients, and ε is a smoothing term to avoid division by
zero, set as 10−4. The overall algorithm of improved fBGD can be implemented
by replacing γ in Eq.(6.19) and Eq.(6.18) with the new γt(θ). In our experiments,
we found that the adaptive learning rate strategy not only addresses the gradient
instability issue for more feature settings, but also works well in the basic CF
setting. However, to provide a fair comparison, we also evaluated in Section 6.6
baselines with both fixed and adaptive learning rates, but found that the adaptive
learning scheme used for fBGD had little effect on the end result compared with
a fixed one. This suggests that the same unstable gradient issue is not such a
frequently encountered issue in SGD-based shallow embedding models. It may
also explain why in these original work (Chen et al., 2012; Rendle, 2012; Qiang
et al., 2013; Yuan et al., 2016b, 2017; Wang et al., 2017a) a regular (non-adaptive)
learning rate was typically adopted for optimization. However, providing further
analysis on this matter falls beyond the scope of this work.

6.6 Experiments

As the key contribution of this work is in the deriving of an efficient batch gradi-
ent algorithm that learns from whole implicit data instead of sampled data, we
conduct experiments to study its prediction accuracy in contrast with negative
sampling based SGD baselines, and examine its efficiency in contrast with original
BGD.

6.6.1 Experimental Settings
6.6.1.1 Datasets

For our evaluation, we use two data sets, namely, Yahoo Music1 and Last.fm2.
First, we perform a the basic pre-processing on the two data sets: to speed up the

1http://webscope.sandbox.yahoo.com/catalog.php?datatype=r&did=2
2http://www.dtic.upf.edu/~ocelma/MusicRecommendationDataset/

123

http://webscope.sandbox.yahoo.com/catalog.php?datatype=r&did=2
 http://www.dtic.upf.edu/~ocelma/MusicRecommendationDataset/

6.6 Experiments

experiments we follow the same procedure as in Christakopoulou and Banerjee
(2015); Yuan et al. (2016b) by randomly drawing a subset of users from the
user-pool of the Yahoo Music data set; on the Last.fm data set, similarly as
in Weston et al. (2012) we extract the latest one-week actions per user via the
timestamp, and consider two tracks played by the same user as “consecutive" if
they are played within 90 minutes. In our experiments Yahoo music is used as the
traditional CF data set, where user- and item-field contain only user ID and item
ID. Last.fm is used as a context-aware (or next-item) recommendation data set,
where each user-field contains a user ID and her previously played music track
and each item-field contains a song ID and the artist information. Furthermore,
on Last.fm similarly to Rendle et al. (2009b), we remove those cases of users that
have listened to fewer than ten tracks, and item-fields that have been selected
less than 5 user-fields. This is because the high sparsity in the original data set
makes it difficult to evaluate recommendation algorithms (e.g., some user-fields
only have one action). Note that, cold users and items on Yahoo have been
pruned by the official provider. Table 6.1 provides basic statistics on the data
set, after the preprocessing step.

6.6.1.2 Baselines and Evaluation Protocols

In this section, we compare fBGD with a variety of state-of-the-art embedding-
based models (i.e., Most Popular (MP) (see Chapter 3), SGD, Pairwise Ranking
FM (PRFM) (Yuan et al., 2016a; Qiang et al., 2013), lambdaFM, BoostFM) that
are specifically designed for prediction from implicit data. MP and PRFM are
omitted since they have been described in previous chapters.

• SGD (Chen et al., 2012; Rendle, 2012): This baseline uses SGD to optimize
the point-wise regression loss function with a feature-based factorization
model, such as FM or Eq.(6.1). We report the results of Eq.(6.1) since it
performs slightly better than FM on Last.fm1. The “negative” items used
for training are uniformly sampled from the unobserved item set. To show
the impact of negative sampling, we vary the size of negative actions for

1The better accuracy is probably because Eq.(6.1) only models useful feature interactions between user-
and item-field, ignoring them among the same field which are typically redundant Juan et al. (2016).

124

6.6 Experiments

each positive one. E.g., SGD×16 denotes the positive-to-negative ratio is
1:16, which is consistent with the results shown in Figure 6.1.

• LambdaFM (Yuan et al., 2016b): LambdaFM has been reported as a
state-of-the-art item recommendation baseline in Wang et al. (2017a). The
authors proposed three Lambda based sampling methods for optimizing
ranking metrics, such as NDCG. We only investigate LambdaFM with the
item popularity-based static sampler since the training time is much shorter
than the other two dynamic samplers.

• BoostFM (Yuan et al., 2017): A recently published implicit recommen-
dation model inspired by boosting framework. The authors proposed two
models, namely B.WPFM and B.WLFM, by adopting different samplers
for the component recommenders. We present results using both models.
Please note that B.WPFM is able to mimic AdaBPR (Liu et al.) on Yahoo
with only user and item variables. B.WLFM is equivalent to LambdaFM
when there is only one component recommender.

We adopt the leave-one-out evaluation protocol as in Rendle et al. (2009b); He
et al. (2017). On Last.fm, the latest action per user-field u is held out for pre-
diction, and all models are trained on the remaining data. While for the Yahoo
Music data set, we select randomly one action per u for prediction, since there is
no timestamp information. This results in a disjoint training set Straining = S\Stest

and test set Stest. To assess the recommendation accuracy of fBGD, we adopt two
standard ranking metrics: Normalized Discounted Cumulative Gain (NDCG) and
Mean Reciprocal Rank (MRR) respectively. We truncate the ranked list at 10
and 50 for both metrics, denoted by NDCG@10 and NDCG@50, MRR@10 and
MRR@50. For each metric, we first calculate the accuracy per u from Stest, and
then obtain the average performance over all u ∈ U .

6.6.1.3 Experimental Reproducibility

For a fair comparison purpose, all reported results use an embedding dimension
of k = 20 similarly as in Yuan et al. (2016b) if not explicitly declared. Results for
k = 10, 50, 100, 200 show similar behavior but are omitted for saving. Regarding

125

6.6 Experiments

Table 6.1: Basic statistics of the datasets. The density on Yahoo and Last.fm
is 0.28% and 0.033% respectively.

Datasets |U | |I| pU pI |S|
Yahoo 200,000 136,736 200,000 136,736 76,344,627

Last.fm 62,594 57,975 64,691 75,042 1,271,769

Table 6.2: Comparison of implicit embedding models.

Models Sampler Ratio Optimizer Loss
SGD×1 Uniform 1:1 SGD LS

SGD×256 Uniform 1:256 SGD LS
PRFM Uniform 1:1 SGD LtR

LambdaFM Static 1:1 SGD LtR
B.WPFM Uniform 1:1 SGD LtR
B.WLFM Static 1:1 SGD LtR

fBGD - - BGD LS
“Uniform”,“Static” and “Dynamic” are short for a uniform, static and
dynamic sampler respectively. Static sampler means the sampling dis-
tribution of negative items is defined before training and keeps un-
changed during the whole optimization process. Dynamic sampler
changes the sampling distribution of negative items according to the
current state of learning. “Ratio” represents the positive-to-negative
item ratio. “LS”, “LOG”, “LtR” and “MiniMax” are short for least square,
logistic, learning-to-rank (LtR) and minimax loss function respectively.

fBGD, the other hyperparameters on both datasets are: the learning rate γ = 0.05,
regularization λθ = 0.01, maxiter = [200, 400]. Empirically, we find that fBGD
will nearly converge in around 200 iterations. After that, more iterations will only
bring very slight improvements (see Figure 6.3). The weighting hyperparameters
α and ρ are tuned according to specific data, which is shown later. Regarding
other baselines, we tune γ and λθ from 0.001, 0.005, 0.01, 0.05, 0.1 to find the
optimal performance. For BoostFm, the number of component recommenders is
set to the default value, i.e. 10. ρ for LambdaFM and B.WLFM is tuned from
0.1, 0.3, 0.5, 0.8, 1.0 according to Yuan et al. (2016b, 2017).

6.6.2 Performance Evaluation
6.6.2.1 Model Comparison

In what follows, we provide the overall performance of all models on the two data
sets in Table 6.3 and 6.4. We also summarize the characteristics of the different
models in Table 6.2. Our initial observation is that fBGD outperforms all other

126

6.6 Experiments

Table 6.3: Accuracy evaluation on Yahoo. f−BGD denotes fBGD with a uniform
weight (ρ = 0). The training iterations of f−BGD is 400. For each measure, the
best results for SGD and all models are indicated in bold, which also applies to
Table 6.4.

Methods NDCG@10 NDCG@50 MRR@10 MRR@50
MP 0.0046 0.0099 0.0031 0.0042

PRFM 0.0178 0.0346 0.0124 0.0157
LambdaFM 0.0200 0.0380 0.0140 0.0176
B.WPFM 0.0186 0.0358 0.0129 0.0163
B.WLFM 0.0216 0.0397 0.0152 0.0188
SGD×1 0.007 0.0172 0.0045 0.0065
SGD×4 0.0133 0.0292 0.009 0.0122
SGD×16 0.0186 0.0355 0.0132 0.0166
SGD×64 0.0197 0.0364 0.0139 0.0172
SGD×256 0.0193 0.0353 0.0139 0.0169

f−BGD 0.0223 0.0395 0.0160 0.0194
fBGD 0.0237 0.0406 0.0166 0.0200

methods in terms of prediction quality. We attribute this finding on two aspects:
(1) the optimization of each model parameter in fBGD makes use of the whole
implicit data, whereas the other SGD-based models only use a fraction of sam-
pled data. In other words, the convergence of SGD is suboptimal relative to the
whole training data; (2) the proposed weighting strategy can address effectively
the imbalanced-class problem in implicit data, as well as assign item-wise penal-
ties for further prediction improvement. The proposed weighting strategy is an
important component for fBGD to obtain state-of-the-art performance. Next, we
focus on investigating the first aspect that is related to our main contribution,
and before concluding we address the following research question (RQ): how can
negative sampling strategies influence the performance of these SGD-
based models in implicit data, regarding both prediction accuracy and
efficiency?

To show the impact of sampling size, we start from SGD×1 by increasing the
number of sampled negative items corresponding to each positive one1, denoted by
SGD×n. Table 6.3 shows that SGD×64 > SGD×16 > SGD×4 > SGD×1, which
indicates that the prediction accuracy of SGD is sensitive to the sampling size of

1Note that due to the loss function limitations, it generally does not hold by adding more than one sampled
negative item for PRFM, LambdaFM, BoostFM and IRGAN.

127

6.6 Experiments

Table 6.4: Accuracy evaluation on Last.fm.

Methods NDCG@10 NDCG@50 MRR@10 MRR@50
MP 0.0014 0.0030 0.0010 0.0013

PRFM 0.1056 0.1738 0.0740 0.0883
LambdaFM 0.1312 0.1989 0.0950 0.1094
B.WPFM 0.1121 0.1827 0.0790 0.0938
B.WLFM 0.1462 0.2132 0.1069 0.1211
SGD×1 0.0436 0.0955 0.0285 0.0389
SGD×2 0.0511 0.1033 0.0341 0.0447
SGD×4 0.0565 0.1055 0.0389 0.0489
SGD×8 0.0596 0.1033 0.0433 0.0520
SGD×16 0.0535 0.0905 0.0390 0.0464
SGD×64 0.0360 0.0574 0.0263 0.0306

f−BGD 0.0801 0.1477 0.0541 0.0681
fBGD 0.1847 0.2477 0.1411 0.1548

negative items. Specifically, one negative sample per positive item is insufficient
to achieve optimal performance; sampling more negative items is beneficial but
too many negative items may also hurt the performance, which can be seen from
the result of SGD×256. Hence, the optimal sampling ratio has to be searched
by performing many experimental trials, which is time-consuming in practice.
Besides, although SGD×64 >1 SGD×1 in prediction accuracy, the theoretical
computation complexity of SGD×64 is about 32 times higher than SGD×1, which
can be verified in Figure 6.1 (b). Similar observations can be made in Table 6.4
on the Last.fm data.

To show the impact of sampling distribution, we conduct a performance
comparison of PRFM to LambdaFM and B.WPFM to B.WLFM. PRFM and
LambdaFM share the same loss function, sampling ratio and SGD optimizer
(Table 6.2) but give different prediction quality. The improved performance of
LambdaFM over PRFM is due to the popularity-based static sampler, which in
LambdaFM is more effective than the uniform one in PRFM, in terms of iden-
tifying ‘good’ negative examples (Yuan et al., 2016b). Similar observation and
analysis apply to B.WPFM and B.WLFM.

With the above analysis, we have demonstrated the clear limitations of nega-
tive sampling in implicit data settings. The above analysis provide supports for

1In the remainder, ‘>’ denotes ‘outperform’.

128

6.6 Experiments

Table 6.5: Accuracy evaluation on Last.fm by adding features. u, p, i and a
denote user, last item (song), next item and artist respectively. Note u & p
belong to the user-field, and i & a belong to the item-field. All hyper-parameters
of fBGD are fixed.

Features NCDG@10 NCDG@50 MRR@10 MRR@50
(u, i) 0.0416 0.0837 0.0281 0.0365

(u, p, i) 0.1761 0.2378 0.1333 0.1467
(u, p, i, a) 0.1847 0.2477 0.1411 0.1548

our thesis Statement (3). We now proceed to investigating the merits of fBGD
that does not rely on any kind of sampling strategies.

For a fair comparison, we employ a uniform weight for all negative items by
setting ρ to 0, denoted by f−BGD . Thus, both f−BGD and SGD×n use the least
square loss function but they differ in their optimizers: f−BGD adopts the batch
gradient optimizer while SGD×n adopts SGD. Table 6.3 displays evidence that
f−BGD outperforms SGD×64, which holds the best prediction among all SGD×n
variants. Similar observations can be drawn from Table 6.4, where we note that
f−BGD SGD×8. We argue that the improved performance of f−BGD over SGD is
attributed to f−BGD ability to converge on the whole implicit data instead of a
fraction of sampled data. That is, the optimization direction of f−BGD is likely
to find a global or local minimum of the overall objective function (Eq.(6.2)),
while the optimization direction of SGD is to find the optimum for each single
instance (i.e. without

∑
in Eq.(6.2)). The optimal direction (i.e. reducing

prediction errors) for each instance may not be the optimum for whole data.
This is supported by the reported results, which indicate clearly the importance
of optimizing model parameters by adopting the batch gradient method and with
the whole implicit data. In what remains, we investigate the properties of fBGD
for the prediction in implicit data, regarding the weighting strategy, the capacity
of modeling rich features, and its high efficiency.

6.6.2.2 Impact of fBGD Weighting

Interestingly, we observe that fBGD with a uniform weight (i.e. f−BGD) yields
inferior results than PRFM in Table 6.4. The reason is because our fBGD is
built on the point-wise regression (quantitative) loss function, whereas implicit

129

6.6 Experiments

128 512 2048 8192 32768

0

0.004

0.008

0.012

0.016

0.02

a0

R
an

k
A

cc
ur

ac
y

MRR@10
NDCG@10

(a) Yahoo: tune α0 (ρ = 0)

0.0 0.2 0.4 0.5 0.6 0.8 1.0

0.012

0.015

0.018

0.021

0.023

r

R
an

k
A

cc
ur

ac
y

MRR@10
NDCG@10

(b) Yahoo: tune ρ (α0=8192)

8 32 128 512 2048

0.03

0.06

0.09

α0

R
an

k
A

cc
ur

ac
y

MRR@10
NDCG@10

(c) Last.fm: tune α0 (ρ = 0)

0.0 0.2 0.4 0.5 0.6 0.8 1.0

0

0.06

0.12

0.18

ρ

R
an

k
A

cc
ur

ac
y

MRR@10
NDCG@10

(d) Last.fm: tune ρ (α0=32)

Figure 6.4: Impact of weighting parameters α0 and ρ.

recommendation problem is actually regarded as an item ranking (qualitative)
task. With a suitable ranking loss function, PRFM is able to optimize the ranking
metrics more directly and thus is more effective. To pursue the state-of-the-art
performance, we have implemented a simple yet effective weighting scheme in
Section 6.4.4. Now we show how the weighting strategy impacts the performance
of fBGD.

Figure 6.4 shows the prediction quality by tuning α0 and ρ in the weight
function. As previously discussed, the overall coefficient α0 largely impacts fBGD
as the amount of positive and “negative” feedback in the whole implicit data is
highly unbalanced, the results of which are reflected in (a) and (c). We then adjust
α0 to the best value (in our case of ρ = 0), and vary ρ to investigate its impact on
the performance, reflected in (b) and (d). It can be seen that a proper ρ improves
the performance on both data sets. Moreover, when we compare the Yahoo data
set to that of Last.fm, we notice a much larger improvement. The reason for

130

6.6 Experiments

1

1001

1.3

1492

1.5

1964

0

500

1000

1500

2000

(u,i) (u,p,i) (u,p,i,a)
features

N
or

m
al

iz
ed

 tr
ai

ni
ng

 ti
m

e

BGD
fBGD

(a) Last.fm (k=20)

1

444

0

100

200

300

400

(u,i)
features

N
or

m
al

iz
ed

 tr
ai

ni
ng

 ti
m

e

BGD
fBGD

(b) Yahoo (k=20)

0.6 1

2.6

6.1

16.7

0

5

10

15

10 20 50 100 200
k

N
or

m
al

iz
ed

 tr
ai

ni
ng

 ti
m

e

fBGD

(c) Last.fm (u, p, i, a)

0.7 1
2

4.27

15.3

0

5

10

15

10 20 50 100 200
k

N
or

m
al

iz
ed

 tr
ai

ni
ng

 ti
m

e

fBGD

(d) Yahoo (u, i)

Figure 6.5: Training costs of fBGD vs BGD. One unit in (a) and (b) represents
26 and 165 seconds respectively.

that is probably because the high-frequency (popular) music tracks for next-song
recommendation (Last.fm) have a higher likelihood to be true negatives, whereas
for the common item recommendation task (Yahoo) they are more likely to be a
true positive. The results also provide insights as to why MP performs worse on
Last.fm.

6.6.2.3 Impact of Adding Features

As previously discussed, we attempt to optimize a generic recommender model,
which can generate recommendation in either traditional user-item based CF
settings or context-aware settings. We experimentally compare and contrast
our models, by gradually adding features for fBGD, and report our findings in
Table 6.5. As expected, we note that fBGD performs significantly better with

131

6.7 Chapter Summary

(u, p, i) than (u, i) and that performance is further enhanced with (u, p, i, a) than
(u, p, i). As a result, fBGD achieves the best prediction accuracy with all features,
demonstrating its power on feature engineering.

6.6.2.4 Efficiency

We show the relative training time of BGD and fBGD per iteration on Figure 6.5
(a) and (b). First, (a) shows that with all features, the training time of BGD takes
more than 10 hours in each iteration. This is clearly infeasible as BGD/fBGD
demands more than 100 iterations to converge on both datasets. In contrast,
the training time of fBGD is reduced to 26 seconds, which is more than 1000x
faster than BGD. A similar observation is shown in (b). Further, considering
that the theoretical complexity of fBGD is subject to embedding dimension k,
we also show the results regarding an increasing k on (c) and (d). The training
time is almost linear with k rather than k2, which potentially implies that the
overall time complexity is dominated by the observed training data rather than
the unobserved data.

6.7 Chapter Summary

In this work, we elaborated how to train a generic embedding model by a (full)
batch gradient method and simplify the objective function and its gradients,
whereby the large volume of computational cost due to massive unobserved feed-
back can be efficiently eliminated. We then pointed out the issues of gradient
exploding and vanishing, which may be incurred due to the large batched sum-
mation of sparse features. A per-parameter learning scheme arises naturally to
resolve the issue, once the key cause is seen. To seek state-of-the-art accuracy,
we further implemented a simple yet effective item-wise weighting scheme for un-
known items. Moreover, compared with many advanced baseline rankers, fBGD
is a regression model, through which the real-valued scores estimated will be
more informative than those by ranking algorithms. This will make our method
highly attractive for practical usage. The proposed batch gradient method can
also be used in other predictive scenarios with positive-only data, e.g., training
the word-embedding models (Xin et al., 2018), where word ID and context ID

132

6.7 Chapter Summary

can be simply replaced with user ID and item ID in this work without any change
on the model.

This chapter includes the detailed investigation of the NS-based SGD methods
and the whole data based BGD method. All points in our thesis statements have
been empirically studied. Hence, this chapter can support all the four statements
in this thesis.

133

Part IV
Deep Learning for Session-based

Recommendation

In the last two parts, we mainly focus on shallow embed-
ding models that consist of only one hidden layer. As is well
known, the shallow models have limited expressive capacity.
To model more complex preference relations, deep learning
models has become the most important solutions in various
domains of recommender systems. In this part, we investigate
deep learning models in the field of session-based recommen-
dation, which is also an implicit feedback scenario. Specifi-
cally, we introduce a novel sequential generative model that is
based on an efficient convolutional network architecture. To
show the recommendation quality of the proposed model, we
study it on large-scale real-world recommendation datasets.
Furthermore, we have also verified the efficiency advantage
by comparing the proposed model with well-known baseline
models.

134

Chapter 7

Deep Learning for Session-based
recommendation

Session-based recommendation is an important task for real-world recommender
systems. In recent two years, it has become increasingly popular due to the ad-
vancement of deep learning models. Compared with traditional Markov chain
based models, deep learning models are more powerful in modeling complex se-
quential information (Tang and Wang, 2018).

Considering that recurrent neural networks (RNNs) based recommendation
models have been extensively studied, we mainly investigate convolutional neural
networks (CNNs) models for generating sequential recommendation. Recently,
CNN sequential recommendation models have been introduced in this field. In
this chapter, we first examine the typical sequential CNN recommender and show
that both the generative model and network architecture are suboptimal when
modeling long-range dependencies in the item sequence. To address the issues,
we propose a new probabilistic generative model that is capable of learning high-
level representation from both short- and long-range dependencies. We then
introduce a network architecture that is formed as a stack of holed convolutional
layers, where holes are used to increase the receptive fields to reduce parameters.
Finally, we apply residual block structure to wrap each layer, with which the
optimization for much deeper networks are feasible. The proposed generative
model attains state-of-the-art accuracy with less training time in the next item
recommendation task.

It is worth mentioning that due to the powerful expressive capacity of deep
neural network (DNN), we model the implicit session data differently from previ-

135

7.1 Introduction

ous work. That is, we do not directly compute the preference scores of items but
generate the probability distribution of them and choose the next item with the
highest probability value. The way of generating desired probability distribution
is similar to van den Oord et al. (2016); Oord et al. (2016b,a); Kalchbrenner et al.
(2016), which are used in very different research fields such as for voice, image
generation and machine translation.

This chapter is mainly based on our recent work “A Simple but Hard-to-
Beat Baseline for Session-based Recommendations” in http://cn.arxiv.org/

abs/1808.05163.

7.1 Introduction

Leveraging sequences of item interactions (e.g., clicks or purchases) to improve
real-world recommender systems has become increasingly popular in recent years.
These sequences are automatically generated when users interact with online sys-
tems in sessions (e.g., shopping session, or music listening session). For example,
users on Last.fm1 or Soundcloud2 typically enjoy a series of songs during a cer-
tain time period without any interruptions, i.e., a listening session. The set of
songs played in one session usually have strong correlations (Cheng et al., 2017),
e.g., sharing the same album, artist, or genre. Accordingly, a good recommender
system is supposed to generate recommendations by taking advantage of these
sequential patterns in the session.

A class of models often employed for these sequences of item interactions
are the Recurrent Neural Networks (RNNs). RNNs typically generate a softmax
output where high probabilities represent the most relevant recommendations.
While effective, these RNN-based models, such as (Hidasi et al., 2015; Chatzis
et al., 2017; Quadrana et al., 2017), depend on a hidden state of the entire past
that prevents parallel computation within a sequence (Gehring et al., 2017).
Thus their speed is limited in both training and evaluation.

By contrast, training CNNs does not depend on the computations of the
previous time step and therefore allow parallelization over every element in a
sequence. Inspired by the successful use of CNNs in image tasks, a newly proposed

1https://www.last.fm
2https://www.soundcloud.com

136

http://cn.arxiv.org/abs/1808.05163
http://cn.arxiv.org/abs/1808.05163

7.1 Introduction

Embedding Look-up

Convolutional Layers

Max pooling

Fee
d

fo
rw

ard
 laye

rs

t

(a) (b) (c) (d)

Figure 7.1: The core structure of Caser. The red, yellow and blue regions
denotes a 2× k, 3× k and 4× k convolution filter respectively, where k = 5. The
purple row stands for the true next item.

sequential recommender, referred to as Caser (Tang and Wang, 2018), abandoned
RNN structures, proposing instead a convolutional sequence embedding model,
and demonstrated that the proposed CNN-based recommender gives comparable
prediction accuracy with the RNN model in the top-N sequential recommendation
task. The basic idea of the convolution processing is to treat the t×k embedding
matrix as the “image" of the previous t items in k dimensional latent space and
regard the sequential pattens as local features of the “image". A max pooling
operation that only preserves the maximum value of the convolutional layer is
performed to increase the receptive field, as well as dealing with the varying
length of input sequences. Figure 7.1 depicts the key architecture of Caser.

Considering the training speed of networks, in this chapter we follow the path
of sequential convolution techniques for the next item recommendation task. We
show that the typical network architecture used in Caser have several obvious
drawbacks — e.g.,: (1) the max pooling scheme that is safely used in computer
vision may discard important position and recurrent signals when modeling long-
range sequence data; (2) generating the softmax distribution only for the desired
item fails to effectively use the compete set of dependencies. Both drawbacks
become more severe as the length of the sessions and sequences increases. To ad-
dress these issues, we introduce a fundamentally different CNN-based sequential

137

7.2 Preliminaries

generative model that allows us to model the complex conditional distributions
even in very long-range item sequences. To be more specific, first our generative
model is designed to explicitly encode item inter-dependencies, which allows to
directly estimate the distribution of the output sequence (rather than the desired
item) over the raw item sequence. Second, instead of using inefficient huge fil-
ters, we stack the 1D dilated convolutional layers (Yu and Koltun, 2015) on top
of each other to increase the receptive fields when modeling long-range dependen-
cies. Thus no pooling layer is used in the proposed CNN structure. It is worth
noting that although the dilated convolution was invented for dense prediction in
image generation tasks (Chen et al., 2016; Yu and Koltun, 2015; Sercu and Goel,
2016), and has been applied in other fields (e.g., acoustic (Sercu and Goel, 2016;
Oord et al., 2016a) and translation (Kalchbrenner et al., 2016; Strubell et al.,
2017) tasks), it is yet unexplored in recommender systems with huge sparse data.
Furthermore, to ease the optimization of the deep generative architecture, we
propose using residual network to wrap convolutional layer(s) by residual block.
To our knowledge, this is also the first work in terms of using residual learning
for sequential recommendation. The combination of these choices enables us to
tackle large-scale problems and attain state-of-the-art results in both short- and
long-range sequential recommendation data sets. In summary, our main contri-
butions in this chapter include a novel probabilistic generative model (Section
7.3.1) and a fundamentally different convolutional network architecture (Sections
7.3.2 ∼ 7.3.4).

7.2 Preliminaries

First, the problem of recommending items from sequences is described. Next,
a recent convolutional sequence embedding recommendation model (Caser) is
shortly recapitulated along with its limitations. Lastly, we review previous work
on sequence-based recommender systems.

7.2.1 Top-N Sequential Recommendation

Let {x0, x1, ..., xt−1, xt} (interchangeably denoted by x0:t) be a clicked item se-
quence (or a session), where xi ∈ R (0 ≤ i ≤ t) is the index of the clicked item

138

7.2 Preliminaries

out of a total number of t + 1 items in the sequence. The goal of sequential
recommendation is to seek a model such that for a given prefix item sequence,
x = {x0, ..., xi} (0 ≤ i < t), it generates a ranking or classification distribution
y for all candidate items, where y = [y1, ..., yn] ∈ Rn. yj can be a score, prob-
ability or a rank of item i + 1 that will occur in this sequence. In practice, we
typically make more than one recommendation by choosing the top-N items from
y, referred to as the top-N sequential recommendations.

7.2.2 Limitations of Caser

The basic idea of Caser is to embed the previous t items as a t× k matrix E by
the embedding look-up operation, as shown in Figure 7.1 (a). Each row vector of
the matrix corresponds to the latent features of one item. The embedding matrix
can be regarded as the “image" of the t items in the k-dimensional latent space.
Intuitively, models of various CNNs that are successfully applied in computer
vision can be adapted to model the “image" of an item sequence. However, there
are two aspects that differentiate sequence modeling from image processing, which
makes the use of CNN based models non-straightforward. First, the variable-
length item sequences in real-world scenarios produce a large number of “images"
of different sizes, where traditional convolutional structures with fix-sized filters
may fail. Second, the most effective filters for images, such as 3 × 3 and 5 × 5,
are not suitable for sequence “images” since these small filters (in terms of row-
wise orientation) are not suitable to capture the representations of full-width
embedding vectors.

To address the above limitations, filters in Caser slide over full columns of the
sequence “image” by large filter. That is, the width of filters is usually the same
as the width of the input “images”. The height typically varies by sliding windows
over 2− 5 items at a time (Figure 7.1 (a)). Filters of different sizes will generate
variable-length feature maps after convolution (Figure 7.1 (b)). To ensure that
all maps have the same size, the max pooling is performed over each map, which
selects only the largest number of each feature map, resulting in a 1 × 1 map
(Figure 7.1 (c)). Finally, these 1 × 1 maps from all filters are concatenated to
form a feature vector, followed by a softmax layer that yields the probabilities of
next item (Figure 7.1 (d)). Note that we have omitted the vertical convolution in

139

7.2 Preliminaries

Input

Conv:1
r=3

Conv:2
r=5

Conv:3
r=7

item 0 1 2 3 4 5 6

1 2 3 4 5 6 7
item

Standard Conv1D 1×3

 Sampled

 Softmax

 FC

Layer

(a) Standard CNN

Input
𝑙=1

Conv:1
𝑙=2
r=3

Conv:2
𝑙=4
r=7

Conv:3
𝑙=8
r=15

item 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
item

Conv1D: 1×3
𝑙=2

Conv1D: 1×3
𝑙=4

Sampled
Softmax

 FC

Layer

(b) Dilated CNN with ‘Holes’

Figure 7.2: The proposed generative architecture with 1D standard CNNs (a)
and efficient dilated CNNs (b). An example of a standard 1D convolution filter
and dilated filters are shown at the bottom of (a) and (b) respectively. The blue
dash line is the identity map which exists only for residual block (b) in Fig. 7.3.

Figure 7.1, since it does not solve the major problems discussed below. However,
in our experiments, we report final results of Caser with both horizontal and
vertical convolutions, although the vertical one results in a very slight accuracy
gain.

Based on the above analysis of the convolutions in Caser, one may find that
there exist several drawbacks with the current design. First, the max pooling
operator has obvious disadvantages. It cannot distinguish whether an important
feature in the map occurs just one or multiple times and it ignores the position in
which it occurs. The max pooling operator while safely used in image processing
(with small pooling filters, e.g., 3 × 3) may be harmful for modeling long-range
sequences (with large filters, e.g., 1× 50). Second, the shallow network structure
in Caser that suits for only one hidden convolutional layer is likely to fail when
modeling complex relations or long-range dependences. The last important dis-
advantage comes from the generative process of next item, which we will describe
in detail in Section 7.3.1.

140

7.2 Preliminaries

7.2.3 Related Work

Early work in sequential recommendations mostly rely on the markov chain (Ren-
dle et al., 2010; Cheng et al., 2013; Wang et al., 2015) and feature-based matrix
factorization (Rendle, 2012; Chen et al., 2012) approaches. Compared with neural
network models, the markov chain based approaches fail to model complicated re-
lations in the sequence data. For example, in Caser, the authors pointed out that
markov chain approaches failed to model union-level sequential patterns and did
not allow skip behaviors in the item sequences. Factorization based approaches
such as factorization machines model a sequence by the sum of its item vectors.
However, these methods do not consider the order of items and are not specifically
invented for sequential recommendations.

Recently, deep learning models have shown state-of-the-art recommendation
accuracy in contrast to conventional models. Moreover, RNNs, a class of deep
neural networks, have almost dominated the area of sequential recommendations.
For example, a Gated Recurrent Unit (GRURec) architecture with a ranking loss
was proposed by (Hidasi et al., 2015) for session-based recommendation. In the
follow-up papers, various RNN variants have been designed to extend the typical
one for different application scenarios, such as by adding personalization (Quad-
rana et al., 2017), content (Gu et al., 2016) and contextual features (Smirnova
and Vasile, 2017), attention mechanism (Cui et al., 2017; Pei et al., 2017; Li et al.,
2017) and different ranking loss functions (Hidasi and Karatzoglou, 2017).

By contrast, CNN based sequential recommendation models are more chal-
lenging and much less explored because convolutions are not a natural way to
capture sequential patterns. To our best knowledge, only two types of sequential
recommendation architectures have been proposed to date: the first one by Caser
is a standard 2D CNN, while the second is a 3D CNN (Tuan and Phuong, 2017)
designed to model high-dimensional features. Unlike the aforementioned exam-
ples, we propose the use of a stack of 1D CNNs with efficient dilated convolution
filters and residual blocks for building the architecture of our generative model.

141

7.3 Model Design

7.3 Model Design

To address the above limitations, we introduce a new conditional generative model
that is formed of a stack of 1D convolution layers. We first focus on the form
of the distribution, and then the architectural innovations. Generally, our pro-
posed model is fundamentally different from Caser in several key ways: (1) our
probability estimator explicitly models the distribution transition of all individ-
ual items at once, rather than the final one, in the sequence; (2) our network has
a deep, rather than shallow, structure; (3) our convolutional layers are based on
the efficient 1D dilated convolution rather than standard 2D convolution; and (4)
pooling layers are not used.

7.3.1 Sequential Generative Modeling

In this section, we propose a generative model directly operating on the sequence
of previous items. Our aim is to estimate a distribution over the original item
sequences that can be used to tractably compute the likelihood of items and to
generate the future items. Let p(x) be the joint distribution of item sequence
x = {x0, ..., xt}. To model p(x), we factorize it as a product of conditional
distributions by the chain rule.

p(x) =
t∏
i=1

p(xi|x0:i−1,θ)p(x0) (7.1)

where the value p(xi|x0:i−1,θ) is the probability of i-th item xi conditioned on all
the previous items x0:i−1. A similar setup has been adopted by NADE (Larochelle
and Murray, 2011), PixelRNN/CNN (Oord et al., 2016b; van den Oord et al.,
2016) in biological and image domains. To model the highly complicated function
in Eq. (7.1), an expressive sequence model is necessary.

Owing to the ability of neural networks in modeling complex nonlinear re-
lations, in this chapter we model the conditional distributions by a stack of 1D
convolutional networks. To be more specific, the network receives x0:t−1 as the
input and outputs distributions over possible x1:t, where the distribution of xt is
our final expectation. For example, as illustrated in Figure 7.2, the output distri-
bution of x15 is determined by x0:14, while x14is determined by x0:13. It is worth
noting that in previous sequential recommendation literatures, such as Caser,

142

7.3 Model Design

GRURec and Li et al. (2017); Quadrana et al. (2017); Tuan and Phuong (2017);
Tan et al. (2016), they only model a single conditional distribution p(xi|x0:i−1,θ)

rather than all conditional probabilities
∏t

i=1 p(xi|x0:i−1,θ)p(x0). Within the con-
text of the above example, assuming {x0, ..., x14} is given, models like Caser only
estimate the probability distribution (i.e., softmax) of the next item x15 (also
see Figure 7.1 (d)), while our generative method estimates the distributions of
all individual items in {x1, ..., x15}. The comparison of the generating process is
shown below.

Caser/GRURec : {x0, x1, ..., x14}︸ ︷︷ ︸
input

⇒ x15︸︷︷︸
output

Ours : {x0, x1, ..., x14}︸ ︷︷ ︸
input

⇒ {x1, x2, ..., x15}︸ ︷︷ ︸
output

(7.2)

where ⇒ denotes ‘predict’. Clearly, our proposed model is more effective in
capturing the set of all sequence relations, whereas Caser and GRURec fail to
explicitly model the internal sequence features between {x0, ..., x14}. In prac-
tice, to address the drawback, such models will typically generate a number of
sub-sequences (or sub-sessions) for training by means of data augmentation tech-
niques (Tan et al., 2016) (e.g., padding, splitting or shifting the input sequence),
such as shown in Eq. (7.3) (see (Tuan and Phuong, 2017; Li et al., 2017; Quadrana
et al., 2017; Tang and Wang, 2018)).

Caser/GRURec sub-session− 1 : {x−1, x0, ..., x13} ⇒ x14

Caser/GRURec sub-session− 2 : {x−1, x−1, ..., x12} ⇒ x13

......

Caser/GRURec sub-session− 12 : {x−1, x−1, ..., x2} ⇒ x3

(7.3)

While effective, the above approach to generate sub-session cannot guarantee
the optimal results due to the separate optimization for each sub-session. In
addition, optimizing these sub-sessions separately will result in corresponding
computational costs. Detailed comparison with empirical results has also been
reported in our experimental sections.

In summary, our generative model has three properties: (1) same as Caser
and GRURec, it is also autoregressive in the target item (as opposed to GANs
(Goodfellow et al., 2014)); (2) different from Caser and GRURec, it is capable

143

7.3 Model Design

of explicitly modeling the complete set of sequential dependencies in a natural
way without resorting to more additional sub-sequences; and (3) it is sensitive
to the ordering of the items in both input and output. An additional advantage
is that pooling layers are not used in our architecture, and thus the output of
the convolutional layer is guaranteed to have the same spatial dimensions as the
input. The unchanged dimensionality makes layer-wise stacking and residual
learning much easier, which is detailed later.

7.3.2 Network Architecture

The network architecture is shown in Figure 7.2. We will refer to a dilated convo-
lution with a dilation factor l as l-dilated convolution. As can be seen, compared
with the standard CNN that linearly increases the receptive field, the dilated
CNN has a much larger receptive field by the same stacks without introducing
more parameters.

7.3.2.1 Embedding Look-up

Given an item sequence {x0, ..., xt}, the model retrieves each of the first t items
{x0, ..., xt−1} via a look-up table, and stacks these item embeddings together.
Assuming the embedding dimension is 2k, where k will be set as the number
of inner channels in the convolutional network. This results in a matrix of size
t× 2k. Caser on the other hand treats the input matrix as a 2D “image” during
convolution, while the proposed architecture learns the sequential representation
by 1D convolutional filters, which we will describe later.

7.3.2.2 Dilation

Instead of using standard convolutions, we apply the dilated ones to construct the
proposed generative model. Dilated convolutions were first proposed in Yu and
Koltun (2015), which enlarge the receptive field of images without increasing the
filter size. The basic idea of dilation is to apply the convolutional filter over a field
larger than its original length by dilating it with zeros. As such, it is more efficient
since it utilizes fewer parameters. For this reason, a dilated filter is also referred
to as a holed or sparse filter. Another benefit is that dilated convolution can

144

7.3 Model Design

preserve the spatial dimensions of the input, which makes the stacking operation
much easier for both convolutional layers and residual structures.

Figure 7.2 shows the network comparison between the standard convolution
and dilated convolutions with the proposed sequential generative model. The
dilation factor in (b) are 1, 2, 4 and 8. To describe the network architecture, we
denote receptive field, j-th convolutional layer, channel and dilation as r, Fj, C
and l respectively. By setting the width of convolutional filter f as 3, we can see
that the dilated convolutions (Fig. 7.2 (b)) allow for exponential increase in the
size of receptive fields (r = 2j+1 − 1), while the same stacking structure for the
standard convolution (Fig. 7.2 (a)) has only linear receptive fields (r = 2j + 1).
Formally, with dilation l, the filter window from location i is given as[

xi xi+l xi+2l ... xi+(f−1)·l
]

Clearly, the dilated convolutional structure is more effective to model long-range
item sequences, and thus more efficient without using larger filters or becoming
deeper. In practice, to further increase the model capacity and receptive fields,
one just need to simply repeat the architecture in Fig. 7.2 multiple times by
stacking, e.g., 1, 2, 4, 8, 1, 2, 4, 8, 1, 2, 4, 8.

7.3.2.3 One-dimensional Transformation

Although our dilated convolution operator depends on the 2D input matrix E,
the proposed network architecture is actually composed of all 1D convolutional
layers. To model the 2D embedding input, we perform a reshape operation, which
serves as a prerequisite for performing 1D convolution. Specifically, the 2D matrix
E is reshaped from t× 2k to a 3D tensor T of size 1× t× 2k, where 2k is treated
as the “image” channel rather than the width of the standard convolution filter
in Caser. Figure 7.3 (b) illustrates the reshaping process.

7.3.3 Residual Learning

Although increasing the depth of network layers can help obtain higher-level fea-
ture representations, it also easily results in the vanishing gradient issue, which
makes the learning process much harder. To address the degradation problem,
residual learning (He et al., 2016a,b) has been introduced for deep networks.

145

7.3 Model Design

1×1

+

Masked 1×3

Layer-Norm

ReLU

Input E

Layer-Norm

1×1

Layer-Norm

2𝑘

 E

identity
F(E)+E

F(E) 2𝑘

𝑘

ReLU

ReLU

(a)

+

Masked 1×3

Normalization

ReLU

Input E

Masked 1×3

2𝑘

 E

identity
F(E)+E

F(E) 2𝑘

ReLU

Normalization

(b)

t

Dilated
Conv1D：
(1×3, 2k)

2k

t

Shape (t×2k, 1)

Standard
Conv2D
(3×2k,1)

1

Shape (1×t, 2k)

(c) One-dimensional Transformation

Figure 7.3: Dilated residual blocks (a), (b) and one-dimensional transformation
(c). (c) shows the transformation from the 2D filter (C = 1)(left) to the 1D 2-
dilated filter (C = 2k) (right); the vertical black arrows represent the direction of
the sliding convolution. In this work, the default stride for the dilated convolution
is 1. Note the reshape operation in (b) is performed before each convolution in
(a) and (b) (i.e., 1 × 1 and masked 1 × 3), which is then followed by a reshape
back step after convolution.

0 1 2 3 4

1 2 3 4 5

√
0 1 2 3 4

1 2 3 4 5

×
3 0 1 2 4

1 2 3 4 5

×
0 1 2 3 4

1 2 3 4 5

√
-1 -1 -1 -1

padding masking
(a) (b) (c) (d)

-1

padding

3 0 1 2 4

5 6 -1 -1 -1

√
(e)

-1 -1 -1

padding

Figure 7.4: The future item can only be determined by the past ones according
to Eq. (7.1). (a) (d) and (e) show the correct convolution process, while (b) and
(c) are wrong. E.g., in (d), items of {1, 2, 3, 4} are masked when predicting 1,
which can be technically implemented by padding.

While residual learning has achieved huge success in the domain of computer vi-
sion, to our knowledge it has not appeared in the recommender system literature.

The basic idea of residual learning is to stack multiple convolutional layers
together as a block and then employ a skip connection scheme that passes the
previous layers’s feature information to its posterior layer. The skip connection

146

7.3 Model Design

scheme allows to explicitly fit the residual mapping rather than the original iden-
tity mapping, which can maintain the input information and thus enlarge the
propagated gradients. Formally, denoting the desired mapping as H(E), we let
the residual block fit another mapping of F (E) = H(E)−E. The desired map-
ping now is recast into F (E) +E by element-wise addition (assuming that F (E)

and E are of the same dimension). As has been evidenced in He et al. (2016a),
optimizing the residual mapping F (E) is much easier than the original, unrefer-
enced mapping H(E). Inspired by He et al. (2016b); Kalchbrenner et al. (2016),
we introduce two alternative residual modules in Fig. 7.3 (a) and (b).

In (a), we wrap each dilated convolutional layer by a residual block, while in
(b) we wrap every two dilated layers by a different residual block. Note with the
design of block (b), the input layer and the second convolutional layer should be
connected by skip connection (i.e., the blue dash line in Fig. 7.2). Specifically,
each block is made up of the normalization, activation (e.g., ReLU Nair and
Hinton (2010)), convolutional layers and a skip connection in a specific order. In
this work we adopt the state-of-the-art layer normalization Ba et al. (2016) before
each activation layer, as it is well suited to sequence processing in contrast with
batch normalization Ioffe and Szegedy (2015).

Regarding the properties of the two residual networks, the residual block in
(a) consists of 3 convolution filters: one dilated filter of size 1×3 and two regular
filters of size 1 × 1. The 1 × 1 filters are introduced to change the size of C so
as to reduce the parameters to be learned by the 1 × 3 kernel. The first 1 × 1

filter (close to input E in Fig. 7.3 (a)) is to change C from 2k to k, while the
second 1 × 1 filter does the opposite transformation in order to maintain the
spatial dimensions for the next stacking operation. To show the effectiveness of
the 1 × 1 filters in (a), we compute the number of parameters in both (a) and
(b). For simplicity, we omit the activation and normalization layers. As we can
see, the number of parameters for the 1× 3 filter is 1× 3× 2k × 2k = 12k2 (i.e.,
in (b)) without the 1 × 1 filters. While in (a), the number of parameters to be
learned is 1× 1× 2k × k + 1× 3× k × k + 1× 1× k × 2k = 7k2. Although the
simple residual module in (b) has more parameters, we empirically find that it
is a bit more effective than (a) when the sequential relations are relatively weak.

147

7.3 Model Design

Table 7.1: Session statistics of all data sets. MUSIC_M5 denotes MUSIC_M
with maximum session size of 5. The same applies to MUSIC_L. ‘M’ denotes 1
million.

DATA YOO MUSIC_M5 MUSIC_L5 MUSIC_L10 MUSIC_L20 MUSIC_L50 MUSIC_L100
RAW-SESSIONS 0.14M 0.61M 2.14M 1.07M 0.53M 0.21M 0.11M
SUB-SESSIONS-T 0.07M 0.31M 1.07M 3.21M 4.28M 4.91M 5.10M

The residual mapping F (E, {Wi}) in (a) and (b) is formulated as:

F (E, {Wi}) =

W3(σ(ψ(W2(σ(ψ(W1(σ(ψ(E)))))))))) Fig.7.3 (a)

σ(ψ(W ′
4(σ(ψ(W ′

2(E))))) Fig.7.3 (b)
(7.4)

where σ and ψ denote ReLU and layer-normalization, W1 and W3 denote the
convolution weight function of standard 1 × 1 convolutions, while W2, W ′

2 and
W ′

4 denote the weight function of l-dilated convolution filter with size of 1 × 3.
Note that bias terms are omitted for simplifying notations.

7.3.3.1 Masking

We propose a masking strategy for the 1D dilated convolution to prevent the
network from seeing the future items in the output sequence. Specifically, when
predicting p(xi|x0:i−1), the convolution filters are not allowed to make use of the
information from xi:t. Figure 7.4 shows several different ways to perform convo-
lution. As shown, the masking operation can be implemented either by padding
the input sequence in (d) or shifting the output sequence by a few timesteps in
(e). The padding method in (e) is very likely to result in information loss in
a sequence, particularly for short sequences. Hence in this work, we apply the
padding strategy in (d) with the padding size of (f − 1) ∗ l.

7.3.4 Final Layer, Network Training and Generating

As mentioned, the matrix in the last layer of the convolution architecture (see
Fig. 7.2), denoted by Eo , preserves the same dimensional size of the input E,
i.e., Eo ∈ Rt×2k. However, the output should be a matrix or tensor that con-
tains probability distributions of all items in the output sequence x1:t, where the
probability distribution of xt is the desired one that generates top-N predictions.
To do this, we can simply use one more convolutional layer on top of the last
convolutional layer in Fig. 7.2 with filter of size 1 × 1 × 2k × n, where n is the

148

7.3 Model Design

Table 7.2: Accuracy comparison. The upper, middle and below tables are
MRR@5, HR@5 and NDCG@5 respectively.

YOO MUSIC_M5 MUSIC_L5 MUSIC_L10 MUSIC_L20 MUSIC_L50 MUSIC_L100
MostPop 0.0050 0.0024 0.0006 0.0007 0.0008 0.0007 0.0007
GRURec 0.1645 0.3019 0.2184 0.2124 0.2327 0.2067 0.2086
Caser 0.1523 0.2920 0.2207 0.2214 0.1947 0.2060 0.2080
NextItNet 0.1715 0.3133 0.2327 0.2596 0.2748 0.2735 0.2583
MostPop 0.0151 0.0054 0.0014 0.0016 0.0016 0.0016 0.0016
GRURec 0.2773 0.3610 0.2626 0.2660 0.2694 0.2589 0.2593
Caser 0.2389 0.3368 0.2443 0.2631 0.2433 0.2572 0.2588
NextItNet 0.2871 0.3754 0.2695 0.3014 0.3166 0.3218 0.3067
MostPop 0.0075 0.0031 0.0008 0.0009 0.0010 0.0009 0.0009
GRURec 0.1923 0.3166 0.2294 0.2258 0.2419 0.2197 0.2212
Caser 0.1738 0.3032 0.2267 0.2318 0.2068 0.2188 0.2207
NextItNet 0.2001 0.3288 0.2419 0.2700 0.2853 0.2855 0.2704

MostPop returns the most popular item respectively. Regarding the setup of our model, we use two-hidden-layer convolution structure with dilation factor
1, 2, 4 for the first four data sets (i.e., YOO, MUSIC_M5 , MUSIC_L5 and MUSIC_L10), while for the last three long-range sequence data sets, we use
1, 2, 4, 8, 1, 2, 4, 8, to obtain above results.

number of items. Following the procedure of one-dimensional transformation in
Fig. 7.3 (c), we obtain the expected ouput matrix Ep ∈ Rt×n, where each row
vector after the softmax operation represents the categorical distribution over xi
(0 < i ≤ t).

The aim of optimization is to maximize the log-likelihood of the training data
w.r.t. θ. Clearly, maximizing log p(x) is mathematically equivalent to minimiz-
ing the sum of the binary cross-entropy loss for each item in x1:t. For practical
recommender systems with tens of millions items, the negative sampling strat-
egy such as sampled softmax (Jean et al., 2014) can be applied to bypasses the
generation of full softmax distributions, where the 1 × 1 convolutional layer is
replaced by a fully-connected (FC) layer with weight matrix Eg ∈ R2k×n. The
recommendation accuracy by the negative sampling strategies is nearly identical
with the full softmax method with properly tuned sampling size.

For comparison purpose, we only predict the next one item in our evaluation,
and then stop the generating process. Nevertheless, the model is able to generate
a sequence of items simply by feeding the predicted one item (or sequence) into the
network to predict the next one, and thus the prediction at the generating phrase
is sequential. This matches most real-world recommendation scenarios, where
the next action is followed when the current one has been observed. But at both
training and evaluation phases, the conditional predictions for all timesteps can
be made in parallel, because the complete sequence of input items x is already
available.

149

7.4 Experiments

7.4 Experiments

In this section we detail our experiments, report results for several data sets, and
compare our model (called NextItNet) with the well-known RNN-based model
GRURec1 (Hidasi et al., 2015; Tan et al., 2016) and the state-of-the-art CNN-
based model Caser2 (Tang and Wang, 2018). Note that (1) since the main contri-
butions in this chapter do not focus on combining various features, we omit the
comparison with content- or context-based sequential recommendation models,
such as the 3D CNN recommender (Tuan and Phuong, 2017) and other RNN vari-
ants (Gu et al., 2016; Smirnova and Vasile, 2017; Li et al., 2017; Quadrana et al.,
2017); (2) the GRURec baseline could be roughly regarded as the state-of-the-art
Improved GRURec (Tan et al., 2016) when dealing with the long-range session
data sets because our main data augmentation technique for the two baseline
models follows the way of Improved GRURec.

7.4.1 Datasets and Experiment Setup
7.4.1.1 Datasets and Preprocessing

The first data set ‘Yoochoose-buys’ (YOO for short) is chosen from the RecSys
Challenge 20153, which contains buying and clicking events. We only keep the
buying data. To avoid noise data, we filter out sessions of length shorter than 3.
To fairly compare the capacity of NextItNet in modeling sequences, we do not
consider additional contexts in this chapter, although Yoo contains item price
and quality information. We find that in the processed Yoo data 96% sessions
have a length shorter than 10, and we remove the 4% longer sessions and refer it
as a short-range sequential data.

The remaining data sets are extracted from Last.fm4: one medium-size (MU-
SIC_M) and one large-scale (MUSIC_L) collection by randomly drawing 20,000
and 200,000 songs respectively. In the Last.fm data set, we observe that most
users listen to music several hundred times a week, and some even listen to more
than one hundred songs within a day. Hence, we are able to test our model in

1https://github.com/hidasib/GRU4Rec
2https://github.com/graytowne/caser
3http://2015.recsyschallenge.com/challenge.html
4http://www.dtic.upf.edu/ ocelma/MusicRecommendationDataset/lastfm-1K.html

150

https://github.com/hidasib/GRU4Rec
https://github.com/graytowne/caser

7.4 Experiments

Table 7.3: Accuracy comparison. The upper, middle and below tables are
MRR@20, HR@20 and NDCG@20 respectively.

YOO MUSIC_M5 MUSIC_L5 MUSIC_L10 MUSIC_L20 MUSIC_L50 MUSIC_L100
MostPop 0.0090 0.0036 0.0009 0.0010 0.0011 0.0011 0.0011
GRURec 0.1839 0.3103 0.2242 0.2203 0.2374 0.2151 0.2162
Caser 0.1660 0.2979 0.2234 0.2268 0.2017 0.2133 0.2153
NextItNet 0.1901 0.3223 0.2375 0.2669 0.2815 0.2794 0.2650
MostPop 0.0590 0.0180 0.0052 0.0053 0.0056 0.0056 0.0056
GRURec 0.4603 0.4435 0.3197 0.3434 0.3158 0.3406 0.3336
Caser 0.3714 0.3937 0.2703 0.3150 0.3110 0.3273 0.3298
NextItNet 0.4645 0.4626 0.3159 0.3709 0.3814 0.3789 0.3731
MostPop 0.0195 0.0066 0.0018 0.0019 0.0021 0.0020 0.0020
GRURec 0.2460 0.3405 0.2460 0.2481 0.2553 0.2433 0.2427
Caser 0.2122 0.3197 0.2342 0.2469 0.2265 0.2392 0.2412
NextItNet 0.2519 0.3542 0.2554 0.2904 0.3041 0.3021 0.2895

both short- and long-range sequences by cutting up these long-range listening
sessions. In MUSIC_L, we define the maximum session length t as 5, 10, 20, 50

and 100, and then extract every t successive items as our input sequences. This
is done by sliding a window of both size and stride of t over the whole data. We
ignore sessions in which the time span between the last two items is longer than
2 hours. In this way, we create 5 data sets, referred to as RAW-SESSIONS. We
randomly split these RAW-SESSIONS data into training (50%), validation (5%),
and testing (45%) sets.

In our evaluation, we observe that the performance of Caser and GRURec
degrades significantly for very long sequence inputs, such as when t = 20, 50

and 100. As mentioned before, for example, when setting t = 50, Caser and
GRURec will predict x49 by using x0:48, but without explicitly modeling the item
inter-dependencies between x0 and x48. To remedy this defect, when t > 5, we
follow the common approach (Tan et al., 2016; Li et al., 2017) by manually cre-
ating additional sessions from the training sets of RAW-SESSIONS so that Caser
and GRURec can leverage the full dependency to a large extent. Still setting
t = 50, one training session will then produce 45 more sub-sessions by padding
the beginning and removing the end indices, referred to as SUB-SESSIONS.
The example of the 45 sub-sessions are given as follows: {x−1, x0, x1, ..., x48},
{x−1, x−1, x0, ..., x47},..., {x−1, x−1, x−1, ..., x4}. In the evaluation, we find there
are no further improvements even we produce more fine-grained sub-sessions,
such as {x−1, x−1, x−1, ..., x3}. Regarding MUSIC_M, we only show the results
when t = 5 due to the similar trend in MUSIC_L. We show the statistics of

151

7.4 Experiments

Table 7.4: Effects of sub-session in terms of MRR@5. The upper, middle and
below tables represent GRU, Caser and NextItNet respectively. “10”, “20”, “50”
and “100” the session length. All high parameters are fixed.

Sub-session 10 20 50 100
Without 0.1985 0.1645 0.1185 0.0746
With 0.2124 0.2327 0.2067 0.2086
Without 0.1571 0.1012 0.0216 0.0084
With 0.2214 0.1947 0.2060 0.2080
Without 0.2596 0.2748 0.2735 0.2583

Table 7.5: Effects (MRR@5) of increasing embedding size. The upper and below
tables are MUSIC_M5 and MUSIC_L100 respectively.

2k 16 32 64 128
GRURec 0.2786 0.2955 0.3019 0.3001
Caser 0.2855 0.2982 0.2979 0.2958
NextItNet 0.2793 0.3063 0.3133 0.3183
GRURec 0.1523 0.1826 0.2086 0.2043
Caser 0.0643 0.1129 0.2080 0.2339
NextItNet 0.1668 0.2289 0.2583 0.2520

Note that all three models use 2k as the embedding size, where k
in our model is the number of inner channels.

RAW-SESSIONS & training data of SUB-SESSIONS (i.e., SUB-SESSIONS-T)
in Table 7.1.

7.4.1.2 Hyper-parameter Settings

All models were trained on GPUs using Tensorflow. From the different gradient
descent optimizers tried, Adam (Kingma and Ba, 2014) gave the best convergence
performance and was used for all evaluations. The learning rates and batch sizes
of baseline methods were manually set according to performance in validation
sets. For all data sets, NextItNet used the learning rate of 0.001 and batch size
of 32. Embedding size 2k is set to 64 for all models without special mention. In
addition, for comparison, we report all results with residual block (a) and full
softmax. We have validated the performance of results block (b) separately.

152

7.4 Experiments

0 2 4 6 8 10 12 14

4

6

8

10

12

training instances

A
vg

 lo
ss

NextItNet g=256k
Caser g=256k
GRU g=256k

(a) Loss

0 2 4 6 8 10 12 14

0

0.08

0.16

0.24

training instances

M
R

R
@

10
0

NextItNet g=256k
Caser g=256k
GRU g=256k

(b) MRR@5

0 2 4 6 8 10 12 14

0

0.1

0.2

0.3

training instances

H
R

@
10

0

NextItNet g=256k
Caser g=256k
GRU g=256k

(c) HR@5

0 2 4 6 8 10 12 14

0

0.08

0.16

0.24

0.32

training instances

N
D

C
G

@
10

0

NextItNet g=256k
Caser g=256k
GRU g=256k

(d) NDCG@5

Figure 7.5: Convergence behaviors of MUSIC_L100. GRU is short for GRURec.
g = 256k means the number of training sequences (or sessions) of one unit in x-
axis is 256k. Note that (1) to speed up the evaluation, all of the convergence tests
are performed on the first 1024 sessions in the testing set, which also applies to
Fig. 7.6; (2) clearly, GRU and Caser have not converged in above figures.

7.4.1.3 Evaluation Protocols

We reported the evaluated results by three popular top-N metrics, namely MRR@N
(Mean Reciprocal Rank) (Hidasi et al., 2015) and HR@N (Hit Ratio) (He et al.,
2016c) and NDCG@N (He et al., 2016c) (Normalized Discounted Cumulative
Gain). MRR and NDCG take the rank of the item into account, which is im-
portant in settings where the order of recommendations matters, while HR@N
does not consider the actual rank of the item as long as it is amongst the top-N.
For saving spaces, we have omitted the detailed formulas. N is set to 5 and 20

for comparison. We evaluate the prediction accuracy of the last (i.e., next) item
of each sequence in the testing set, similarly to Hidasi and Karatzoglou (2017);
Tang and Wang (2018).

7.4.2 Results Summary

Overall performance results of all methods are illustrated in Table 7.2 and 7.3,
which clearly show that the neural network models (i.e., Caser, GRURec and our
model) obtain very promising accuracy in the top-N sequential recommendation
task. For example, in MUSIC_M5, the three neural models perform more than
120 times better on MRR@5 than MostPop, which is a widely used recommen-
dation benchmark. The best MRR@20 result we have achieved by NextItNet
is 0.3223 in this data set, which roughly means that the desired item is ranked
on position 3 in average among the 20,000 candidate items. We then find that

153

7.4 Experiments

Table 7.6: Effects of the residual block in terms of MRR@5. “Without” means no
skip connection. “M5”, “L5”, “L10” and “L50” denote MUSIC_M5 , MUSIC_L5
, MUSIC_L10 and MUSIC_L50 respectively. All high parameters are fixed.

DATA M5 L5 L10 L50
Without 0.2968 0.2146 0.2292 0.2432
With 0.3300 0.2455 0.2645 0.2760

among these neural network based models, NextItNet largely outperforms Caser
& GRURec. We believe there are several reasons contributing to the state-of-the-
art results. First, as highlighted in Section 7.3.1, NextItNet takes full advantage
of the complete sequential information instead of just the sequence information
between the last item and the previous sequence. This can be easily verified in
Table 7.4, where we observe that Caser & GRURec without subsession perform
extremely worse with long sessions. Particularly, Caser performs much worse than
GRURec. The reason is because compared with a regular CNN model1, RNN has
an inherent advantage in modeling long-range sequences. More importantly, the
poor performance of Caser is likely to be attributed to the max pooling operation,
which seriously hurts its performance when modeling long-range sequences. In
addition, even with sub-session Caser & GRURec still show significantly worse
results than NextItNet because the separate optimization of each sub-session is
clearly suboptimal compared with leveraging full sessions by NextItNet2. Second,
unlike Caser, NextItNet has no pooling layers, although it is also a CNN based
model. As a result, NextItNet preserves the whole spatial resolution of the origi-
nal embedding matrix E without any information lost. The third advantage may
be that NextItNet can support deeper layers by using residual learning, which
better suits for modeling complicated relations and long-range dependencies. We
have separately validated the performance of residual block in Fig. 7.3 (b) and
showed the results in Table 7.6. It can be observed that the performance of
NextItNet can be significantly improved by the residual block design. We also
report results with varying embedding size in Table 7.5, which shows that a rel-
atively larger embedding size will increase the prediction accuracy. Empirically,
the model performs well enough when 2k is between 64 and 128.

1In fact, Caser is not a real sequential model because the max pooling operation does not retain sequential
relations of items.

2Note that NextItNet is also able to model sub-sessions similarly as Caser & GRURec when necessary.

154

7.4 Experiments

0 2 4 6 8 10 12 14

4

6

8

10

12

training instances

A
vg

 lo
ss

NextItNet g=256k
Caser g=256k
GRU g=256k

(a) Loss

0 2 4 6 8 10 12 14

0

0.08

0.16

0.24

training instances

M
R

R
@

10
0

NextItNet g=256k
Caser g=256k
GRU g=256k

(b) MRR@5

0 2 4 6 8 10 12 14

0

0.1

0.2

0.3

training instances

H
R

@
10

0

NextItNet g=256k
Caser g=256k
GRU g=256k

(c) HR@5

0 2 4 6 8 10 12 14

0

0.08

0.16

0.24

training instances

N
D

C
G

@
10

0

NextItNet g=256k
Caser g=256k
GRU g=256k

(d) NDCG@5

Figure 7.6: Convergence behaviors of MUSIC_L20.

Table 7.7: Overall training time (mins).

Model GRURec Caser NextItNet
MUSIC_L5 66 59 54
MUSIC_L20 282 191 76
MUSIC_L100 586 288 150

In addition to the advantage of recommendation accuracy, we have also eval-
uated the efficiency of NextItNet in Table 7.7. All methods are compared by
outputting the full softmax distribution. First, it can be seen that NextItNet
and Caser requires less training time than GRURec in all three data sets. This
reason that CNN-based models can be trained much faster is due to the full par-
allel mechanism of convolutions. Clearly, the training speed advantage of CNN
models are more preferred by modern parallel computing systems. Second, it
shows that NextItNet achieves further improvements in training time compared
with Caser. The faster training speed is mainly because NextItNet leverages the
complete sequential information during training and then converges much faster
by less training epochs. To better understand of the convergence behaviours, we
have shown them in Fig. 7.5 and 7.6. As can be seen, our model with the same
number of training sessions is converging faster (a) and better (b, c, d) than Caser
and GRURec. This confirms our claim in Section 7.3.1 since Caser and GRURec
cannot make full use of the internal sequential information in the session. The
faster and better convergence behaviors indicate the effectiveness of the proposed
generative architecture.

155

7.5 Chapter Summary

7.5 Chapter Summary

In this chapter, we presented a simple, efficient and effective convolutional genera-
tive model for session-based top-N item recommendations. The proposed model
combines masked filters with 1D dilated convolutions to increase the receptive
fields, which is very important to model the long-range dependencies. In addition,
we have applied residual learning to enable training of much deeper networks. We
have shown that our model can greatly outperform state-of-the-arts in real-world
session-based recommendation tasks. The proposed model can serve as a generic
method for modeling both short- and long-range session-based recommendation
data.

For comparison purposes, we have not considered additional contexts in either
our model or baselines. However, our model is flexible to incorporate various
context information. For example, if we know the user identity u and location
p, the distribution in Eq. (7.1) can be modified as follows to incorporate these
information.

p(x) =
t∏
i=1

p(xi|x0:i−1,u,P ,θ)p(x0) (7.5)

where we can combine E (before convolution) or Eo (after convolution) with the
user embedding vector u and location matrix P by element-wise operations, such
as multiplication, addition or concatenation. We leave the evaluation for future
work.

156

Part V
Conclusion

In the previous chapters of this thesis, we have studied the
problem of item recommendation using implicit feedback from
two critical aspects: recommendation accuracy and efficiency.
In terms of recommendation accuracy, we have presented
LambdaFM, BoostFM for top-N context-aware recommenda-
tions, and GeoBPR for location based recommendation. In
terms of recommendation efficiency, we have proposed fBGD,
which has the same magnitude computational complexity
with negative sampling based methods although it takes ad-
vantage of all training examples from implicit feedback. All
these models showed superb performance in respective rec-
ommendation tasks. The state-of-the-art performance may
attribute to the smart way of leveraging negative examples.
In recent two years, deep learning models have achieved huge
success in various research fields. The final contribution of
this thesis is to introduce a deep learning based sequential
recommendation model, which generate recommendation by
a probability output rather than by the prediction scores like
above shallow embedding models.

157

Chapter 8

Conclusions and Future Work

8.1 Contribution Summary

In this thesis, we have studied the item recommendation task from implicit feed-
back. Our focus is on both recommendation accuracy and efficiency in real-world
recommender systems.

First, regarding the recommendation accuracy, we found that most previous
works perform uniform sampling from large-scale unobserved implicit feedback.
However, by an insightful analysis from the ranking perspective, we observed that
most randomly sampled negative examples are not good examples because they
fail to improve the top-N ranking measures (e.g., NDCG). By contrast, negative
examples that are ranked at the top positions of the rank list, referred to as good
(or informative) examples, have more contributions for improving the evalua-
tion metrics. The idea inspires two research work, i.e., LambdaFM (Yuan et al.,
2016b,c) in Chapter 2 and BoostFM (Yuan et al., 2017) in Chapter 3. Both mod-
els are designed and evaluated for the top-N context-aware recommendation tasks
from implicit feedback. The intuition and sampling strategies are also consistent,
i.e., oversampling informative unobserved examples as negative for model train-
ing. Regarding LambdaFM, we have designed three lambda-motivated negative
samplers, including a static sampler and two dynamic samplers. All the three
negative samplers show better performance than the uniform sampler in original
cross-entropy based pairwise ranking factorization machines (PRFM). In addi-
tion, we have successfully verified our LambdaFM by a variety of pairwise loss
functions, including hinge loss, exponential loss and fidelity loss. For BoostFM,
we only studied the static sampler for the component recommenders by consid-

158

8.1 Contribution Summary

ering the fact that the two dynamic samplers are much slower than the static
sampler. The main difference of the two models is that LambdaFM is a single
model, whereas BoostFM is a boosting-based ensemble model. LambdaFM can
be seen as a component recommender in BoostFM. BoostFM is able to recover
LambdaFM when there is only one boosting round. In terms of recommendation
accuracy, both LambdaFM and BoostFM have shown significantly better per-
formance than a bunch of state-of-the-art recommendation models. Particularly,
LambdaFM is regarded as a powerful baseline in several recommendation liter-
ature, and shows largely better performance than other baseline models (Wang
et al., 2017b; Zhao et al., 2017). The performance improvements of both models
are attributed to the fact that they are able to more effectively leverage informa-
tive negative examples than many baseline models. In contrast with LambdaFM,
BoostFM is empirically observed with better accuracy when they are trained
with the same sampler. This is because BoostFM is built on many individual
component recommenders, which can help reduce the variance during training.
The extensive study on the performance of LambdaFM and BoostFM empirically
validates our thesis statement (1) and (2) in Chapter 1.

Regarding the GeoBPR model (Yuan et al., 2016d) in Chapter 5, it is designed
by combining geographical preference and pairwise ranking model, referred to as
a co-pairwise ranking model. In this work, our main contribution is to improve
the original pairwise ranking assumption by taking into account of geographi-
cal preference. To our knowledge, it is the first work to change the pairwise
ranking assumption by injecting users’ geographical preference. Although the
model derivation is derived from the ranking perspective, its implementation is
still by means of negative sampling strategy — sampling more unobserved POIs
that have higher geographical preference. The intuition of GeoBPR is similar
to that of LambdaFM and BoostFM as all the three models construct training
pairs by leveraging informative unobserved examples. However, compared with
LambdaFM and BoostFM, GeoBPR is only suitable for location recommenda-
tion. Hence, the work of GeoBPR can also support our thesis statement (1)
and (2), where nearby unobserved POIs are regarded as informative negative
examples.

Second, regarding recommendation efficiency, we have presented the fBGD

159

8.1 Contribution Summary

model (Yuan et al., 2018b) in Chapter 6. The main motivation of fBGD is that
negative sampling based methods are sensitive to the sampling distribution and
sampling size of unobserved examples. Moreover, sampling a fraction of unob-
served data as negative for training may ignore other important examples. In-
spired by this, we designed a full batch gradient descent based recommendation
model that leverages all unobserved examples without any sampling. However, it
is known that the standard batch gradient descent method suffers from expensive
computation cost and is generally infeasible in practice. To solve the efficiency
issue, we perform a series of optimized mathematical derivation on the objective
function. fBGD is accelerated by several magnitudes, by which its time complexity
can reach the same level as the negative sampling based SGD method. Another
contribution is that we observe that the standard batch gradient descent method
suffers from gradient instability issues and performs poorly on recommendation
datasets when there are more than two input features. We then provide an in-
sightful theoretical analysis on this issue and solve it by an intuitive solution.
During the evaluation, we observe that fBGD largely outperforms a variety of
negative sampling based recommendation models with the same level of compu-
tational costs. The experimental results validate our thesis statement (3) and
(4) in Chapter 1.

The last contribution of this thesis is that we introduced NextItNet (Yuan
et al., 2018a), a session-based recommendation model which is based on the one-
dimensional convolutional neural networks (CNN) rather than the popular recur-
rent neural networks (RNN). The main motivation is that RNN-based models
depend on the hidden state of the entire past that prevents parallel computation.
By contrast, training CNNs does not depend on the computations of the previous
time step and therefore allows parallelization over every element in a sequence.
It is worth noticing that the session-based recommendation task is also based
on implicit feedback. However, different from previous models, NextItNet is a
generating model that estimates the distribution of the output sequence rather
than calculating the relevance scores that are used to generate top-N items list.
In the implementation of NextItNet, we output the softmax distribution of all
items in the list without resorting to sampling methods. In our evaluation, we
show that NextItNet cannot only generate more accurate recommendations than

160

8.2 Future Work

baselines, but also are much faster than them.

8.2 Future Work

In this section, we have figured out several promising future work regarding im-
plicit feedback based item recommendation.

• Dynamic negative sampling for deep embedding models: The dynamic sam-
pling strategy used in LambdaFM which is a one-hidden layer embedding
model has achieved significant success in the recommender system domain.
It is natural to adapt the lambda sampling strategy for deep embedding
models. However, although we have proposed two ways to perform efficient
sampling, the original LambdaFM sampling technique is still very expensive
for deep learning models with more hidden layers. The main time complex-
ity comes from the cost of the scoring function (i.e., deep learning models)
computation. And thus the major difficulty is how to identify the infor-
mative negative examples by bypassing the scoring function computation.
Recently, a kernel based sampling method (Blanc and Rendle, 2017) was
investigated to approximate the real data distribution without resorting to
the computation of the scoring function. However, the method only shows
the decreasing trend of loss function without guarantee of recommendation
accuracy, such as NDCG and MRR discussed in Chapter 2. We may fur-
ther exploit the kernel based sampling method and apply it to various deep
embedding models such as Neural Factorization Machines (He et al., 2017)
and Attentional Factorization Machines (Xiao et al., 2017).

• Batch gradient optimization for various loss functions: The proposed fBGD
method has achieved better recommendation accuracy than a variety of
negative sampling based methods. However, unlike the negative sampling
based methods, fBGD is only limited to the least square regression loss func-
tion. So it is interesting to adapt it for other loss functions such as pairwise
learning to rank losses (e.g., BPR (Rendle et al., 2009b)). A possible solu-
tion is to design a proper surrogate function that is expressed as quadratic
function (i.e., ax2 + bx + c). For example, by Taylor series, the exponen-
tial loss ex approximately equals to 1 + x + 1/2x2 when x is small (e.g.,

161

8.2 Future Work

x < 1.0). In addition, the proposed fBGD is not limited to the domains
discussed in this paper. It potentially benefits many real-world applica-
tions with positive-only data, such as genes association studies (Asgari and
Mofrad, 2015) and data stream mining (Li et al., 2009).

• Deep learning based methods have achieved huge success in domains such as
speech recognition, computer vision and natural language processing. We
notice there are many interesting deep neural networks that were originally
designed for other domains can potentially benefit the recommender system
domain. For example, the recently proposed Caser (Tang and Wang, 2018)
which has achieved success in the session-based recommendation task is
originally inspired by (Kim, 2014), which is a well-known convolutional
neural networks propose for language modeling.

• Generative adversarial network (GAN) has been recently applied into the
recommender system domain. The first GAN model, referred to as IRGAN
(Wang et al., 2017a), is similar to our idea in LambdaFM as both models
rely on the negative sampling strategy. The main difference is that IR-
GAN consists of two modules (i.e., a generator and discriminator), while
LambdaFM has only a discriminator. Interestingly, some work (Wang et al.,
2017a; Yu et al., 2017) argues that leveraging both generator and discrimi-
nator shows better performance than only using discriminator, while other
(Zhao et al., 2017) work empirically shows that using only discriminator
performs better. It is interesting to investigate whether the good perfor-
mance of IRGAN comes from the additional generator.

• Although implicit feedback data is much more popular, explicit feedback
may still be available for the top-N item recommendation task. In this
thesis, we do not distinguish the preference difference of explicit feedback
by simply treating all of them as positive. In practice, there are various
strategies to subdivide the observed feedback. For example, an intuitive
weighting function can be designed to capture the difference of observed
feedback by giving higher values to items with higher ratings or more inter-
action frequencies. While in this case, our proposed models in this thesis

162

8.3 Closing Remarks

have to be accordingly extended to satisfy this request. It will be interesting
to study whether the recommendation quality can be largely improved by
combining the observed explicit feedback.

• In this thesis, we investigate all our proposed recommendation models by
the offline protocol. As for future work, we plan to study the performance
of them by online protocol with a more realistic recommendation scenario.

8.3 Closing Remarks

Recommender systems have played an important role in improving the problem
of information overload. Personalized and context-aware recommendation have
attracted much attention from both academia and industry. One of the most
important challenges in the recommender system domain is the data sparsity due
to the lack of users’ explicit/implicit feedback. In this thesis, we focus on item
recommendation problem from implicit feedback. We find that recommendation
quality and efficiency are largely determined by how to use unobserved feedback.
We have introduced two types of approaches for dealing with unobserved feed-
back, i.e., sampling and non-sampling (or whole-data based) strategies. Generally
speaking, sampling based methods are more popular than using whole data since
they are generic and not limited to specific models. By contrast, the whole-data
based method have shown higher recommendation accuracy than sampling based
methods since sampling based methods may have sampling bias and ignore some
important examples. An important drawback of the whole-data based method
is that they are limited to specific loss and recommendation models. Particu-
larly, they may not be applied to deep learning models with non-linear activation
functions. In contrast, the negative sampling strategies have no such limitations.
That is, both methods have their own pros and cons. In practice, they should be
chosen by taking into account of the specific application.

163

References

Charu C. Aggarwa. Recommender systems. 2016. https://www.springer.com/
gb/book/9783319296579. 4, 11, 12, 13, 14, 16

Ehsaneddin Asgari and Mohammad RK Mofrad. Continuous distributed repre-
sentation of biological sequences for deep proteomics and genomics. PloS one,
10(11):e0141287, 2015. 162

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization.
arXiv preprint arXiv:1607.06450, 2016. 147

Ricardo Baeza-Yates, Carlos Hurtado, and Marcelo Mendoza. Query recom-
mendation using query logs in search engines. In International Conference on
Extending Database Technology. Springer, 2004. 3

Immanuel Bayer, Xiangnan He, Bhargav Kanagal, and Steffen Rendle. A generic
coordinate descent framework for learning from implicit feedback. In Proceed-
ings of the 26th International Conference on World Wide Web, pages 1341–
1350. International World Wide Web Conferences Steering Committee, 2017.
18, 20, 110

Nicholas J Belkin and W Bruce Croft. Information filtering and information
retrieval: Two sides of the same coin? Communications of the ACM, 35(12):
29–38, 1992. 2

Betim Berjani and Thorsten Strufe. A recommendation system for spots in
location-based online social networks. In Proceedings of the 4th Workshop on
Social Network Systems, page 4. ACM, 2011. 87

Alberto Bertoni, Paola Campadelli, and M Parodi. A boosting algorithm for
regression. In ICANN, pages 343–348. Springer, 1997. 67, 68

164

https://www.springer.com/gb/book/9783319296579
https://www.springer.com/gb/book/9783319296579

REFERENCES

Guy Blanc and Steffen Rendle. Adaptive sampled softmax with kernel based
sampling. arXiv preprint arXiv:1712.00527, 2017. 109, 161

Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamil-
ton, and Greg Hullender. Learning to rank using gradient descent. In Proceed-
ings of the 22nd international conference on Machine learning, pages 89–96.
ACM, 2005. 31, 41, 42, 43, 55

Christopher JC Burges. From ranknet to lambdarank to lambdamart: An
overview. 38

Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning to
rank: from pairwise approach to listwise approach. In Proceedings of the 24th
international conference on Machine learning, pages 129–136, 2007. 42

Pablo Castells, Saúl Vargas, and Jun Wang. Novelty and diversity metrics for
recommender systems: choice, discovery and relevance. 2011. http://ir.ii.
uam.es/rim3/publications/ddr11.pdf. 13

Sotirios P. Chatzis, Panayiotis Christodoulou, and Andreas S. Andreou. Recur-
rent latent variable networks for session-based recommendation. In Proceedings
of the 2nd Workshop on Deep Learning for Recommender Systems, pages 38–45.
ACM, 2017. 136

Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and
Alan L Yuille. Deeplab: Semantic image segmentation with deep convo-
lutional nets, atrous convolution, and fully connected crfs. arXiv preprint
arXiv:1606.00915, 2016. 138

Long Chen, Fajie Yuan, Joemon M Jose, and Weinan Zhang. Improving negative
sampling for word representation using self-embedded features. arXiv preprint
arXiv:1710.09805, 2017. 21

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining, pages 785–794. ACM, 2016. 16

165

http://ir.ii.uam.es/rim3/publications/ddr11.pdf
http://ir.ii.uam.es/rim3/publications/ddr11.pdf

REFERENCES

Tianqi Chen, Weinan Zhang, Qiuxia Lu, Kailong Chen, Zhao Zheng, and Yong
Yu. Svdfeature: a toolkit for feature-based collaborative filtering. Journal of
Machine Learning Research, 13(Dec):3619–3622, 2012. vii, 24, 25, 41, 108, 109,
111, 123, 124, 141

Chen Cheng, Haiqin Yang, Irwin King, and Michael R. Lyu. Fused matrix factor-
ization with geographical and social influence in location-based social networks.
In Association for the Advancement of Artificial Intelligence, 2012. 85, 86, 87,
88, 89, 90, 93, 99

Chen Cheng, Haiqin Yang, Michael R Lyu, and Irwin King. Where you like to
go next: Successive point-of-interest recommendation. In International Joint
Conference on Artificial Intelligence, 2013. 141

Chen Cheng, Fen Xia, Tong Zhang, Irwin King, and Michael R Lyu. Gradient
boosting factorization machines. In Proceedings of the 8th ACM Conference on
Recommender systems, pages 265–272. ACM, 2014. 69

Zhiyong Cheng, Jialie Shen, Lei Zhu, Mohan Kankanhalli, and Liqiang Nie. Ex-
ploiting music play sequence for music recommendation. In International Joint
Conference on Artificial Intelligence, 2017. 136

Nipa Chowdhury, Xiongcai Cai, and Cheng Luo. Boostmf: boosted matrix fac-
torisation for collaborative ranking. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pages 3–18. Springer, 2015.
67, 68, 70

Konstantina Christakopoulou and Arindam Banerjee. Collaborative ranking with
a push at the top. In Proceedings of the 26th International Conference on World
Wide Web, pages 205–215, 2015. 76, 124

Alberto Costa and Fabio Roda. Recommender systems by means of information
retrieval. In Proceedings of the International Conference on Web Intelligence,
Mining and Semantics, page 57. ACM, 2011. 2

166

REFERENCES

Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. Performance of recom-
mender algorithms on top-n recommendation tasks. In Proceedings of the fourth
ACM conference on Recommender systems, pages 39–46. ACM, 2010. 41

Qiang Cui, Shu Wu, Yan Huang, and Liang Wang. A hierarchical contextual
attention-based gru network for sequential recommendation. arXiv preprint
arXiv:1711.05114, 2017. 141

Luis M De Campos, Juan M Fernández-Luna, Juan F Huete, and Miguel A
Rueda-Morales. Combining content-based and collaborative recommendations:
A hybrid approach based on bayesian networks. International Journal of Ap-
proximate Reasoning, 51(7):785–799, 2010. 17

Robin Devooght, Nicolas Kourtellis, and Amin Mantrach. Dynamic matrix fac-
torization with priors on unknown values. In Proceedings of the 21th ACM
SIGKDD international conference on knowledge discovery and data mining,
pages 189–198. ACM, 2015. 119

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods
for online learning and stochastic optimization. Journal of Machine Learning
Research, 12(Jul):2121–2159, 2011. 122

Yoav Freund. An adaptive version of the boost by majority algorithm. Machine
learning, 43(3):293–318, 2001. 67

Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-
line learning and an application to boosting. Journal of computer and system
sciences, 55(1):119–139, 1997. 67, 68

Yoav Freund, Raj Iyer, Robert E Schapire, and Yoram Singer. An efficient boost-
ing algorithm for combining preferences. Journal of machine learning research,
4(Nov):933–969, 2003. 41, 42, 55, 67

Jerome Friedman, Trevor Hastie, Robert Tibshirani, et al. Additive logistic re-
gression: a statistical view of boosting (with discussion and a rejoinder by the
authors). The annals of statistics, pages 337–407, 2000. 68

167

REFERENCES

Huiji Gao, Jiliang Tang, Xia Hu, and Huan Liu. Exploring temporal effects for
location recommendation on location-based social networks. In Proceedings of
the 7th ACM conference on Recommender systems, pages 93–100. ACM, 2013.
77, 85, 87

Huiji Gao, Jiliang Tang, Xia Hu, and Huan Liu. Content-aware point of inter-
est recommendation on location-based social networks. In Proceedings of the
twenty-ninth conference on uncertainty in artificial intelligence, 2015. 85

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N
Dauphin. Convolutional sequence to sequence learning. arXiv preprint
arXiv:1705.03122, 2017. 136

Anupriya Gogna and Angshul Majumdar. A comprehensive recommender system
model: Improving accuracy for both warm and cold start users. IEEE Access,
3:2803–2813, 2015. 23

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative ad-
versarial nets. In Advances in neural information processing systems, pages
2672–2680, 2014. 143

Miha Grčar, Dunja Mladenič, Blaž Fortuna, and Marko Grobelnik. Data sparsity
issues in the collaborative filtering framework. In International Workshop on
Knowledge Discovery on the Web, pages 58–76. Springer, 2005. 6

Youyang Gu, Tao Lei, Regina Barzilay, and Tommi Jaakkola. Learning to refine
text based recommendations. In Proceedings of the 2016 Conference on Em-
pirical Methods in Natural Language Processing, pages 2103–2108, 2016. 141,
150

Guibing Guo, Shichang Ouyang, and Fajie Yuan. Approximating word ranking
and negative sampling for word embedding. International Joint Conferences
on Artificial Intelligence, 2018a. 65

168

REFERENCES

Guibing Guo, Songlin Zhai, Fajie Yuan, Yuan Liu, and Xingwei Wang. Vse-ens:
Visual-semantic embeddings with efficient negative sampling. arXiv preprint
arXiv:1801.01632, 2018b. 65

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016a. 145, 147

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings
in deep residual networks. In European conference on computer vision, pages
630–645. Springer, 2016b. 145, 147

Xiangnan He and Tat-Seng Chua. Neural factorization machines for sparse predic-
tive analytics. In Proceedings of the 37th international ACM SIGIR conference
on Research & development in information retrieval, pages 355–364, 2017. vii,
28

Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-Seng Chua. Fast matrix
factorization for online recommendation with implicit feedback. In Proceedings
of the 39th International ACM SIGIR conference on Research and Development
in Information Retrieval, pages 549–558. ACM, 2016c. 18, 20, 110, 114, 153

Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. Neural collaborative filtering. In Proceedings of the 26th International
Conference on Wold Wide Web, pages 173–182. International World Wide Web
Conferences Steering Committee, 2017. vii, 16, 27, 28, 29, 32, 108, 125, 161

Ralf Herbrich, Thore Graepel, and Klaus Obermayer. Support vector learning
for ordinal regression. 1999. 16, 42, 55

Balázs Hidasi and Alexandros Karatzoglou. Recurrent neural networks with top-
k gains for session-based recommendations. arXiv preprint arXiv:1706.03847,
2017. 141, 153

Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
Session-based recommendations with recurrent neural networks. arXiv preprint
arXiv:1511.06939, 2015. 110, 119, 136, 141, 150, 153

169

REFERENCES

Liangjie Hong, Aziz S Doumith, and Brian D Davison. Co-factorization ma-
chines: modeling user interests and predicting individual decisions in twitter.
In Proceedings of the sixth ACM international conference on Web search and
data mining, pages 557–566. ACM, 2013. 55, 108, 109, 110, 113

Longke Hu, Aixin Sun, and Yong Liu. Your neighbors affect your ratings: on
geographical neighborhood influence to rating prediction. In Proceedings of
the 37th international ACM SIGIR conference on Research & development in
information retrieval, pages 345–354. ACM, 2014. 85, 88, 89, 99

Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit
feedback datasets. In Data Mining, 2008. ICDM’08. Eighth IEEE International
Conference on, pages 263–272. Ieee, 2008. 18, 19, 108, 118, 119

Neil Hurley and Mi Zhang. Novelty and diversity in top-n recommendation–
analysis and evaluation. ACM Transactions on Internet Technology (TOIT),
10(4):14, 2011. 14, 34

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. In International Conference
on Machine Learning, pages 448–456, 2015. 147

Sébastien Jean, Kyunghyun Cho, Roland Memisevic, and Yoshua Bengio. On us-
ing very large target vocabulary for neural machine translation. arXiv preprint
arXiv:1412.2007, 2014. 149

Xiaotian Jiang, Zhendong Niu, Jiamin Guo, Ghulam Mustafa, Zihan Lin, Baomi
Chen, and Qian Zhou. Novel boosting frameworks to improve the performance
of collaborative filtering. In Asian Conference on Machine Learning, pages
87–99, 2013. 67, 68, 69, 70

Yuchin Juan, Yong Zhuang, Wei-Sheng Chin, and Chih-Jen Lin. Field-aware
factorization machines for ctr prediction. In Proceedings of the sixth ACM
conference on Recommender systems, pages 43–50, 2016. 124

170

REFERENCES

Nal Kalchbrenner, Lasse Espeholt, Karen Simonyan, Aaron van den Oord, Alex
Graves, and Koray Kavukcuoglu. Neural machine translation in linear time.
arXiv preprint arXiv:1610.10099, 2016. 136, 138, 147

Alexandros Karatzoglou, Xavier Amatriain, Linas Baltrunas, and Nuria Oliver.
Multiverse recommendation: n-dimensional tensor factorization for context-
aware collaborative filtering. In Proceedings of the fourth ACM conference on
Recommender systems, pages 79–86. ACM, 2010. 18, 41

Rahul Katarya and Om Prakash Verma. An effective collaborative movie rec-
ommender system with cuckoo search. Egyptian Informatics Journal, 2017.
3

Noriaki Kawamae. Serendipitous recommendations via innovators. In Proceedings
of the 37th international ACM SIGIR conference on Research & development
in information retrieval, pages 218–225. ACM, 2010. 3

Yoon Kim. Convolutional neural networks for sentence classification. arXiv
preprint arXiv:1408.5882, 2014. 162

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014. 152

Yehuda Koren. The bellkor solution to the netflix grand prize. 2009. https:

//www.netflixprize.com/assets/GrandPrize2009_BPC_BellKor.pdf. 12

Yehuda Koren. Collaborative filtering with temporal dynamics. Communications
of the ACM, 53(4):89–97, 2010. 25

Yehuda Koren and Robert Bell. Advances in collaborative filtering. In Recom-
mender systems handbook, pages 77–118. Springer, 2015. vii, 3, 24

Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques
for recommender systems. Computer, (8):30–37, 2009. vi, 15, 16, 18, 20, 22,
23, 109, 116

Mohit Kothari and Wiraatmadja. Reviews and neighbors influence on perfor-
mance of business. pages 1–10. 103

171

https://www.netflixprize.com/assets/GrandPrize2009_BPC_BellKor.pdf
https://www.netflixprize.com/assets/GrandPrize2009_BPC_BellKor.pdf

REFERENCES

Artus Krohn-Grimberghe, Lucas Drumond, Christoph Freudenthaler, and Lars
Schmidt-Thieme. Multi-relational matrix factorization using bayesian person-
alized ranking for social network data. In Proceedings of the fifth ACM interna-
tional conference on Web search and data mining, pages 173–182. ACM, 2012.
88

Hugo Larochelle and Iain Murray. The neural autoregressive distribution esti-
mator. In Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics, pages 29–37, 2011. 142

Phong Le and Willem Zuidema. Quantifying the vanishing gradient and long
distance dependency problem in recursive neural networks and recursive lstms.
arXiv preprint arXiv:1603.00423, 2016. 120

Mark Levy. Offline evaluation of recommender systems: all pain and no gain? In
Proceedings of the International Workshop on Reproducibility and Replication
in Recommender Systems Evaluation, pages 1–1. ACM, 2013. 33

Jing Li, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Tao Lian, and Jun Ma.
Neural attentive session-based recommendation. In Proceedings of the 2017
ACM on Conference on Information and Knowledge Management, pages 1419–
1428. ACM, 2017. 141, 143, 150, 151

Longfei Li, Peilin Zhao, Jun Zhou, and Xiaolong Li. A boosting framework of
factorization machine. arXiv preprint arXiv:1804.06027, 2018. 75

Xiao-Li Li, Philip S Yu, Bing Liu, and See-Kiong Ng. Positive unlabeled learning
for data stream classification. In Proceedings of the 2009 SIAM International
Conference on Data Mining, pages 259–270. SIAM, 2009. 162

Xuchun Li, Lei Wang, and Eric Sung. Adaboost with svm-based component
classifiers. EAAI, pages 785–795, 2008. 68

Xutao Li, Gao Cong, Xiao-Li Li, Tuan-Anh Nguyen Pham, and Shonali Krish-
naswamy. Rank-geofm: A ranking based geographical factorization method
for point of interest recommendation. In Proceedings of the 37th international

172

REFERENCES

ACM SIGIR conference on Research & development in information retrieval,
pages 433–442, 2015a. 87, 101

Xutao Li, Gao Cong, Xiao-Li Li, Tuan-Anh Nguyen Pham, and Shonali Krish-
naswamy. Rank-geofm: a ranking based geographical factorization method
for point of interest recommendation. In Proceedings of the 37th international
ACM SIGIR conference on Research & development in information retrieval,
pages 433–442, 2015b. 34, 69, 72, 109, 110

Defu Lian, Cong Zhao, Xing Xie, Guangzhong Sun, Enhong Chen, and Yong
Rui. Geomf: joint geographical modeling and matrix factorization for point-
of-interest recommendation. In Proceedings of the 20th ACM SIGKDD inter-
national conference on Knowledge discovery and data mining, pages 831–840.
ACM, 2014. 86, 87, 92, 93

Greg Linden, Brent Smith, and Jeremy York. Amazon. com recommendations:
Item-to-item collaborative filtering. IEEE Internet computing, (1):76–80, 2003.
15

Bin Liu, Hui Xiong, Spiros Papadimitriou, Yanjie Fu, and Zijun Yao. A general
geographical probabilistic factor model for point of interest recommendation.
Knowledge and Data Engineering, IEEE Transactions on, 27(5):1167–1179,
2015. 88

Tie-Yan Liu et al. Learning to rank for information retrieval. Foundations and
Trends® in Information Retrieval, 3(3):225–331, 2009. 20, 41

Xin Liu, Yong Liu, Karl Aberer, and Chunyan Miao. Personalized point-of-
interest recommendation by mining users’ preference transition. In Proceedings
of the 22nd ACM international conference on Information & Knowledge Man-
agement, pages 733–738. ACM, 2013. 87, 101

Yong Liu, Peilin Zhao, Aixin Sun, and Chunyan Miao. A boosting algorithm for
item recommendation with implicit feedback. 67, 70, 108, 110, 125

Wei-Yin Loh. Classification and regression trees. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery, 1(1):14–23, 2011. 16

173

REFERENCES

Qiuxia Lu, Tianqi Chen, Weinan Zhang, Diyi Yang, and Yong Yu. Serendipi-
tous personalized ranking for top-n recommendation. In Web Intelligence and
Intelligent Agent Technology (WI-IAT), 2012 IEEE/WIC/ACM International
Conferences on, volume 1, pages 258–265. IEEE, 2012. 34, 49

Brian McFee and Gert R Lanckriet. Metric learning to rank. In Proceedings
of the 27th International Conference on Machine Learning (ICML-10), pages
775–782, 2010. 32, 34, 39, 57

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Dis-
tributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems, pages 3111–3119, 2013. 30,
31, 108, 109, 110, 113, 116, 119

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted
boltzmann machines. In Proceedings of the 27th international conference on
machine learning (ICML-10), pages 807–814, 2010. 147

Wei Niu, James Caverlee, and Haokai Lu. Neural personalized ranking for image
recommendation. In Proceedings of the Eleventh ACM International Conference
on Web Search and Data Mining, pages 423–431. ACM, 2018. 20

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol
Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray
Kavukcuoglu. Wavenet: A generative model for raw audio. arXiv preprint
arXiv:1609.03499, 2016a. 136, 138

Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent
neural networks. arXiv preprint arXiv:1601.06759, 2016b. 136, 142

Rong Pan, Yunhong Zhou, Bin Cao, Nathan N Liu, Rajan Lukose, Martin Scholz,
and Qiang Yang. One-class collaborative filtering. In Data Mining, 2008.
ICDM’08. Eighth IEEE International Conference on, pages 502–511. IEEE,
2008. 18, 19, 30, 108, 110, 113

Weike Pan and Li Chen. Gbpr: Group preference based bayesian personalized
ranking for one-class collaborative filtering. 2013. 18, 20, 21, 39, 57, 59, 69, 86

174

REFERENCES

Yoon-Joo Park and Alexander Tuzhilin. The long tail of recommender systems
and how to leverage it. In Proceedings of the 2008 ACM conference on Recom-
mender systems, pages 11–18. ACM, 2008. 49

Barak Pearlmutter. Gradient descent: Second order momentum and saturating
error. In Advances in neural information processing system, pages 887–894,
1992. 109

Wenjie Pei, Jie Yang, Zhu Sun, Jie Zhang, Alessandro Bozzon, and David M.J.
Tax. Interacting attention-gated recurrent networks for recommendation. arXiv
preprint arXiv:1711.05114, 2017. 141

Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global
vectors for word representation. In Proceedings of the 2014 conference on em-
pirical methods in natural language processing, pages 1532–1543, 2014. 23

István Pilászy, Dávid Zibriczky, and Domonkos Tikk. Fast als-based matrix
factorization for explicit and implicit feedback datasets. In Proceedings of the
sixth ACM conference on Recommender systems, pages 71–78, 2010. 119

Runwei Qiang, Feng Liang, and Jianwu Yang. Exploiting ranking factorization
machines for microblog retrieval. In Proceedings of the 22nd ACM interna-
tional conference on Conference on information & knowledge management,
pages 1783–1788. ACM, 2013. 38, 39, 43, 58, 66, 123, 124

Massimo Quadrana, Alexandros Karatzoglou, Balázs Hidasi, and Paolo Cre-
monesi. Personalizing session-based recommendations with hierarchical recur-
rent neural networks. arXiv preprint arXiv:1706.04148, 2017. 136, 141, 143,
150

C Quoc and Viet Le. Learning to rank with nonsmooth cost functions. 19:
193–200, 2007. 40, 42, 44, 45

Steffen Rendle. Factorization machines. In Data Mining (ICDM), 2010 IEEE
10th International Conference on, pages 995–1000. IEEE, 2010. vii, 20, 25, 99

175

REFERENCES

Steffen Rendle. Factorization machines with libfm. ACM Transactions on Intel-
ligent Systems and Technology (TIST), 3(3):57, 2012. 3, 16, 39, 41, 44, 58, 59,
99, 108, 109, 112, 123, 124, 141

Steffen Rendle and Christoph Freudenthaler. Improving pairwise learning for
item recommendation from implicit feedback. In Proceedings of the 7th ACM
international conference on Web search and data mining, pages 273–282. ACM,
2014. 4, 18, 20, 21, 41, 49, 62, 65, 69, 88, 101, 108, 115

Steffen Rendle and Lars Schmidt-Thieme. Pairwise interaction tensor factoriza-
tion for personalized tag recommendation. In Proceedings of the fifth ACM
international conference on Web search and data mining, pages 81–90, 2010.
20, 25, 33, 77, 110, 116

Steffen Rendle, Leandro Balby Marinho, Alexandros Nanopoulos, and Lars
Schmidt-Thieme. Learning optimal ranking with tensor factorization for tag
recommendation. In Proceedings of the 15th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages 727–736. ACM, 2009a.
26, 27, 35, 88

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-
Thieme. Bpr: Bayesian personalized ranking from implicit feedback. In Pro-
ceedings of the twenty-fifth conference on uncertainty in artificial intelligence,
pages 452–461. AUAI Press, 2009b. 4, 5, 18, 20, 31, 32, 33, 40, 41, 44, 55, 57,
58, 69, 86, 91, 92, 93, 94, 96, 104, 109, 110, 113, 124, 125, 161

Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. Factorizing
personalized markov chains for next-basket recommendation. In Proceedings
of the 19th international conference on World wide web, pages 811–820. ACM,
2010. 141

Francesco Ricci, Lior Rokach, and Bracha Shapira. Introduction to recommender
systems handbook. In Recommender systems handbook. 2011. 3

Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv
preprint arXiv:1609.04747, 2016. 108

176

REFERENCES

Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-based
collaborative filtering recommendation algorithms. In Proceedings of the 10th
international conference on World Wide Web, pages 285–295. ACM, 2001. 15

Tom Sercu and Vaibhava Goel. Dense prediction on sequences with time-dilated
convolutions for speech recognition. arXiv preprint arXiv:1611.09288, 2016.
138

Ying Shan, T Ryan Hoens, Jian Jiao, Haijing Wang, Dong Yu, and JC Mao.
Deep crossing: Web-scale modeling without manually crafted combinatorial
features. In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 255–262. ACM, 2016. 29

Swapneel Sheth, Nipun Arora, Christian Murphy, and Gail Kaiser. wehelp: a
reference architecture for social recommender systems. In IEEE/ACM Interna-
tional Conference on Automated Software Engineering workshops. IEEE/ACM
International Conference on Automated Software Engineering. NIH Public Ac-
cess, 2010. 3

Leily Sheugh and Sasan H Alizadeh. A note on pearson correlation coefficient as
a metric of similarity in recommender system. In AI & Robotics (IRANOPEN),
2015, pages 1–6. IEEE, 2015. 15

Yue Shi. Ranking and context-awareness in recommender systems. 2013. http:
//homepage.tudelft.nl/c7c8y/theses/PhDThesisShi.pdf. 2, 3

Yue Shi, Alexandros Karatzoglou, Linas Baltrunas, Martha Larson, Alan Han-
jalic, and Nuria Oliver. TFMAP: optimizing map for top-n context-aware rec-
ommendation. In Proceedings of the 37th international ACM SIGIR conference
on Research & development in information retrieval, pages 155–164, 2012a. 22,
41, 42

Yue Shi, Alexandros Karatzoglou, Linas Baltrunas, Martha Larson, Nuria Oliver,
and Alan Hanjalic. Climf: learning to maximize reciprocal rank with collab-
orative less-is-more filtering. In Proceedings of the sixth ACM conference on
Recommender systems, pages 139–146. ACM, 2012b. 22, 32, 34, 35, 39, 41, 57,
88, 101

177

http://homepage.tudelft.nl/c7c8y/theses/PhDThesisShi.pdf
http://homepage.tudelft.nl/c7c8y/theses/PhDThesisShi.pdf

REFERENCES

Yue Shi, Alexandros Karatzoglou, Linas Baltrunas, Martha Larson, and Alan
Hanjalic. Cars2: Learning context-aware representations for context-aware
recommendations. In Proceedings of the 23rd ACM International Conference
on Conference on Information and Knowledge Management, pages 291–300.
ACM, 2014. 22, 41, 42, 69

Elena Smirnova and Flavian Vasile. Contextual sequence modeling for recom-
mendation with recurrent neural networks. arXiv preprint arXiv:1706.07684,
2017. 141, 150

Nathan Srebro and Tommi Jaakkola. Weighted low-rank approximations. In
Proceedings of the 20th International Conference on Machine Learning (ICML-
03), pages 720–727, 2003. 19

Emma Strubell, Patrick Verga, David Belanger, and Andrew McCallum. Fast and
accurate sequence labeling with iterated dilated convolutions. arXiv preprint
arXiv:1702.02098, 2017. 138

Yong Kiam Tan, Xinxing Xu, and Yong Liu. Improved recurrent neural networks
for session-based recommendations. In Proceedings of the 1st Workshop on
Deep Learning for Recommender Systems, pages 17–22. ACM, 2016. 143, 150,
151

Jiaxi Tang and Ke Wang. Personalized top-n sequential recommendation via
convolutional sequence embedding. In ACM International Conference on Web
Search and Data Mining, 2018. 135, 137, 143, 150, 153, 162

Nava Tintarev, Matt Dennis, and Judith Masthoff. Adapting recommendation
diversity to openness to experience: A study of human behaviour. In Interna-
tional Conference on User Modeling, Adaptation, and Personalization, pages
190–202. Springer, 2013. 3

Waldo R Tobler. A computer movie simulating urban growth in the detroit region.
Economic geography, 46(sup1):234–240, 1970. 89

Ming-Feng Tsai, Tie-Yan Liu, Tao Qin, Hsin-Hsi Chen, and Wei-Ying Ma. Frank:
a ranking method with fidelity loss. In Proceedings of the 30th annual inter-

178

REFERENCES

national ACM SIGIR conference on Research and development in information
retrieval, pages 383–390. ACM, 2007. 55

Trinh Xuan Tuan and Tu Minh Phuong. 3d convolutional networks for session-
based recommendation with content features. In Proceedings of the Eleventh
ACM Conference on Recommender Systems, Proceedings of the sixth ACM
conference on Recommender systems ’17. ACM, 2017. 141, 143, 150

Ledyard R Tucker. Some mathematical notes on three-mode factor analysis.
Psychometrika, 31(3):279–311, 1966. vii, 26

Aaron van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex
Graves, et al. Conditional image generation with pixelcnn decoders. In Ad-
vances in Neural Information Processing Systems, pages 4790–4798, 2016. 136,
142

Saúl Vargas and Pablo Castells. Rank and relevance in novelty and diversity
metrics for recommender systems. In Proceedings of the fifth ACM conference
on Recommender systems, pages 109–116. ACM, 2011. 14

Maksims Volkovs and Guang Wei Yu. Effective latent models for binary feedback
in recommender systems. In Proceedings of the 37th international ACM SIGIR
conference on Research & development in information retrieval, pages 313–322,
2015. 119

Jun Wang, Lantao Yu, Weinan Zhang, Yu Gong, Yinghui Xu, Benyou Wang,
Peng Zhan, and Dell Zhang. Irgan: A minimax game for unifying generative
and discriminative information retrieval models. In Proceedings of the 37th in-
ternational ACM SIGIR conference on Research & development in information
retrieval, 2017a. 110, 113, 123, 125, 162

Jun Wang, Lantao Yu, Weinan Zhang, Yu Gong, Yinghui Xu, Benyou Wang,
Peng Zhang, and Dell Zhang. Irgan: A minimax game for unifying gener-
ative and discriminative information retrieval models. In Proceedings of the
40th International ACM SIGIR conference on Research and Development in
Information Retrieval, pages 515–524. ACM, 2017b. 159

179

REFERENCES

Pengfei Wang, Jiafeng Guo, Yanyan Lan, Jun Xu, Shengxian Wan, and Xueqi
Cheng. Learning hierarchical representation model for nextbasket recommen-
dation. In Proceedings of the 38th International ACM SIGIR conference on
Research and Development in Information Retrieval, pages 403–412. ACM,
2015. 141

Yanghao Wang, Hailong Sun, and Richong Zhang. Adamf: Adaptive boosting
matrix factorization for recommender system. In International Conference on
Web-Age Information Management, pages 43–54. Springer, 2014. 67, 68, 69, 70

Jason Weston, Samy Bengio, and Nicolas Usunier. Wsabie: Scaling up to large
vocabulary image annotation. In International Joint Conference on Artificial
Intelligence, pages 2764–2770, 2011. 23, 52, 65

Jason Weston, Chong Wang, Ron Weiss, and Adam Berenzweig. Latent collab-
orative retrieval. In arXiv preprint arXiv:1206.4603, pages 9–16, 2012. 110,
124

Jason Weston, Hector Yee, and Ron J Weiss. Learning to rank recommendations
with the k-order statistic loss. In Proceedings of the sixth ACM conference on
Recommender systems, pages 245–248, 2013. 110

Joost Wit. Evaluating recommender systems: an evaluation framework to pre-
dict user satisfaction for recommender systems in an electronic programme
guide context. Master’s thesis, University of Twente, 2008. https://essay.

utwente.nl/59711/1/MA_thesis_J_de_Wit.pdf. 14, 16

Jun Xiao, Hao Ye, Xiangnan He, Hanwang Zhang, Fei Wu, and Tat-Seng Chua.
Attentional factorization machines: Learning the weight of feature interactions
via attention networks. arXiv preprint arXiv:1708.04617, 2017. 161

Xin Xin, Yuan Fajie, He Xiangnan, and Jose Joemon. Batch is not heavy: Learn-
ing word embeddings from all samples. The Annual Meeting of the Association
for Computational Linguistics, 2018. 8, 107, 132

Liang Xiong, Xi Chen, Tzu-Kuo Huang, Jeff Schneider, and Jaime G Carbonell.
Temporal collaborative filtering with bayesian probabilistic tensor factoriza-

180

https://essay.utwente.nl/59711/1/MA_thesis_J_de_Wit.pdf
https://essay.utwente.nl/59711/1/MA_thesis_J_de_Wit.pdf

REFERENCES

tion. In Proceedings of the 2010 SIAM International Conference on Data Min-
ing, pages 211–222. SIAM, 2010. 20, 25

Jun Xu and Hang Li. Adarank: a boosting algorithm for information retrieval.
In Proceedings of the 37th international ACM SIGIR conference on Research
& development in information retrieval, pages 391–398, 2007. 67, 68, 69, 70,
73

Mao Ye, Peifeng Yin, and Wang-Chien Lee. Location recommendation for
location-based social networks. In Proceedings of the 18th SIGSPATIAL in-
ternational conference on advances in geographic information systems, pages
458–461. ACM, 2010. 90

Mao Ye, Peifeng Yin, Wang-Chien Lee, and Dik-Lun Lee. Exploiting geographical
influence for collaborative point-of-interest recommendation. In Proceedings of
the 37th international ACM SIGIR conference on Research & development in
information retrieval, pages 325–334, 2011. 85, 86, 87, 89

Mao Ye, Xingjie Liu, and Wang-Chien Lee. Exploring social influence for rec-
ommendation: a generative model approach. In Proceedings of the 37th inter-
national ACM SIGIR conference on Research & development in information
retrieval, pages 671–680, 2012. 85

Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated con-
volutions. arXiv preprint arXiv:1511.07122, 2015. 138, 144

Lantao Yu, Weinan Zhang, JunWang, and Yong Yu. Seqgan: Sequence generative
adversarial nets with policy gradient. 2017. 162

Fajie Yuan, Guibing Guo, Joemon Jose, Long Chen, Haitao Yu, and Weinan
Zhang. Optimizing factorization machines for top-n context-aware recommen-
dations. In International Conference on Web Information Systems Engineering,
2016a. 3, 17, 124

Fajie Yuan, Guibing Guo, Joemon M Jose, Long Chen, Haitao Yu, and Weinan
Zhang. Lambdafm: learning optimal ranking with factorization machines using

181

REFERENCES

lambda surrogates. In Proceedings of the 25th ACM International on Confer-
ence on Information and Knowledge Management, pages 227–236. ACM, 2016b.
4, 5, 8, 17, 18, 20, 21, 33, 39, 49, 66, 98, 108, 109, 110, 113, 119, 123, 124, 125,
126, 128, 158

Fajie Yuan, Guibing Guo, Joemon M Jose, Long Chen, Haitao Yu, and Weinan
Zhang. Optimizing factorization machines for top-n context-aware recommen-
dations. In International Conference on Web Information Systems Engineering,
pages 278–293. Springer, 2016c. 158

Fajie Yuan, Joemon M Jose, Guibing Guo, Long Chen, Haitao Yu, and Rami S
Alkhawaldeh. Joint geo-spatial preference and pairwise ranking for point-of-
interest recommendation. In Tools with Artificial Intelligence (ICTAI), 2016
IEEE 28th International Conference on, pages 46–53. IEEE, 2016d. 3, 4, 8, 17,
18, 85, 159

Fajie Yuan, Guibing Guo, Joemon M Jose, Long Chen, Haitao Yu, and Weinan
Zhang. Boostfm: Boosted factorization machines for top-n feature-based rec-
ommendation. In Proceedings of the 22nd International Conference on Intelli-
gent User Interfaces, pages 45–54. ACM, 2017. 4, 8, 17, 18, 66, 98, 108, 110,
113, 119, 123, 125, 126, 158

Fajie Yuan, Alexandros Karatzoglou, Ioannis Arapakis, Joemon M Jose, and
Xiangnan He. A simple but hard-to-beat baseline for session-based recommen-
dations. arXiv preprint arXiv:1808.05163, 2018a. 3, 9, 160

Fajie Yuan, Xin Xin, Xiangnan He, Guibing Guo, Weinan Zhang, Chua Tat-Seng,
and Joemon M Jose. fbgd: Learning embeddings from positive unlabeled data
with bgd. Association for Uncertainty in Artificial Intelligence, 2018b. 4, 8,
17, 32, 65, 107, 160

Quan Yuan, Gao Cong, Zongyang Ma, Aixin Sun, and Nadia Magnenat Thal-
mann. Time-aware point-of-interest recommendation. In Proceedings of the
36th international ACM SIGIR conference on Research and development in
information retrieval, pages 363–372. ACM, 2013. 85, 86, 87, 90

182

REFERENCES

Jia-Dong Zhang and Chi-Yin Chow. Geosoca: Exploiting geographical, social and
categorical correlations for point-of-interest recommendations. In Proceedings
of the 37th international ACM SIGIR conference on Research & development
in information retrieval, pages 443–452, 2015. 85, 86, 87

Tong Zhang. Solving large scale linear prediction problems using stochastic gra-
dient descent algorithms. In Proceedings of the twenty-first international con-
ference on Machine learning, page 116. ACM, 2004. 55, 56

Weinan Zhang. Optimal real-time bidding for display advertising. PhD the-
sis, UCL (University College London), 2016. http://discovery.ucl.ac.uk/
1496878/. 13

Weinan Zhang, Tianqi Chen, Jun Wang, and Yong Yu. Optimizing top-n col-
laborative filtering via dynamic negative item sampling. In Proceedings of the
36th international ACM SIGIR conference on Research and development in
information retrieval, pages 785–788. ACM, 2013. 47, 108, 110, 113

Shenglin Zhao, Irwin King, and Michael R Lyu. A survey of point-of-
interest recommendation in location-based social networks. arXiv preprint
arXiv:1607.00647, 2016a. 87

Shenglin Zhao, Irwin King, and Michael R Lyu. A survey of point-of-
interest recommendation in location-based social networks. arXiv preprint
arXiv:1607.00647, 2016b. 101

Tong Zhao, Julian McAuley, and Irwin King. Leveraging social connections to im-
prove personalized ranking for collaborative filtering. In Proceedings of the 23rd
ACM International Conference on Conference on Information and Knowledge
Management, pages 261–270. ACM, 2014. 18, 20, 21, 69, 88, 91, 109, 110

Wei Zhao, Wenyou Wang, Jianbo Ye, Yongqiang Gao, Min Yang, Zhou Zhao, and
Xiaojun Chen. Leveraging long and short-term information in content-aware
movie recommendation. arXiv preprint arXiv:1712.09059, 2017. 159, 162

183

http://discovery.ucl.ac.uk/1496878/
http://discovery.ucl.ac.uk/1496878/

	Declaration
	Acknowledgements
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	I Introduction and Background
	1 Introduction
	1.1 Background on Recommendation
	1.2 Implicit Feedback Recommendation
	1.3 Thesis Statement
	1.4 Thesis Structures and Contributions
	1.5 Related Publications

	2 Background of Implicit Recommendation
	2.1 Overview on Recommender Systems
	2.1.1 Goals and Formulation of Recommender Systems
	2.1.2 Types of Recommender Systems
	2.1.2.1 Collaborative Filtering Based Recommendations
	2.1.2.2 Content/Context-Based Recommendations

	2.2 Overview on Implicit Recommendation
	2.3 Implicit Feedback Model Overview
	2.3.1 Factorization Models
	2.3.1.1 Basic Matrix Factorization koren2009matrix
	2.3.1.2 SVD++ koren2015advances
	2.3.1.3 SVDFeature chen2012svdfeature
	2.3.1.4 Factorization Machines rendle2010factorization
	2.3.1.5 Tucker Decomposition tucker1966some

	2.3.2 Deep Learning Models
	2.3.2.1 Neural Collaborative Filtering he2017neural
	2.3.2.2 Neural Factorization Machines he2017neuralfm

	2.3.3 Objective Functions with Negative Sampling
	2.3.3.1 Pointwise Loss with Negative Sampling
	2.3.3.2 Pairwise Loss with Negative Sampling

	2.4 Evaluation of Implicit Recommendation
	2.4.1 Implicit Feedback Datasets
	2.4.2 Evaluation Protocols
	2.4.3 Evaluation Metrics

	II SGD with Negative Sampling
	3 Lambda Factorization Machines
	3.1 Introduction
	3.2 Related Work
	3.2.1 Content/Context-based Recommender Systems
	3.2.2 Learning-to-Rank

	3.3 Preliminaries
	3.3.1 Pairwise Ranking Factorization Machines
	3.3.2 Lambda Motivation

	3.4 Lambda Strategies
	3.4.1 Static and Context-independent Sampler
	3.4.2 Dynamic and Context-aware Sampler
	3.4.3 Rank-aware Weighted Approximation

	3.5 Lambda with Alternative Losses
	3.6 Experiments
	3.6.1 Experimental Setup
	3.6.1.1 Datasets
	3.6.1.2 Evaluation Metrics
	3.6.1.3 Baseline Methods
	3.6.1.4 Hyper-parameter Settings

	3.6.2 Performance Evaluation
	3.6.2.1 Accuracy Summary
	3.6.2.2 Effect of Lambda Surrogates/Samplers
	3.6.2.3 Effect of Adding Features
	3.6.2.4 Lambda with Alternative Loss Functions

	3.7 Chapter Summary

	4 Boosting Factorization Machines
	4.1 Introduction
	4.2 Related Work about Boosting
	4.3 Preliminaries
	4.4 Boosted Factorization Machines
	4.4.1 BoostFM
	4.4.2 Component Recommender
	4.4.2.1 Weighted Pairwise Factorization Machines
	4.4.2.2 Weighted LambdaFM Factorization Machines

	4.5 Experiments
	4.5.1 Experimental Setup
	4.5.1.1 Datasets
	4.5.1.2 Evaluation Metrics
	4.5.1.3 Baseline Methods
	4.5.1.4 Hyper-parameter Settings

	4.5.2 Performance Evaluation
	4.5.2.1 Accuracy Summary
	4.5.2.2 Effect of Number of Component Recommenders
	4.5.2.3 Effect of Sampling Strategies (i.e.,)
	4.5.2.4 Effect of Adding Features

	4.6 Chapter Summary

	5 Geographical Bayesian Personalized Ranking
	5.1 Introduction
	5.2 Related Work for POI recommendation
	5.3 Geo-spatial Preference Analysis
	5.3.1 Data Description
	5.3.2 Motivation
	5.3.3 Proximity Analysis

	5.4 Preliminaries
	5.4.1 Problem Statement
	5.4.2 BPR: Ranking with Implicit Feedback

	5.5 The GeoBPR Model
	5.5.1 Model Assumption
	5.5.2 Model Derivation
	5.5.3 Model Learning and Sampling

	5.6 Experiments
	5.6.1 Experimental Setup
	5.6.1.1 Baseline Methods
	5.6.1.2 Parameter Settings
	5.6.1.3 Evaluation Metrics

	5.6.2 Experimental Results
	5.6.2.1 Summary of Experimental Results
	5.6.2.2 Impact of Neighborhood
	5.6.2.3 Impact of Factorization Dimensions

	5.7 Chapter Summary

	III Batch Gradient with All Samples
	6 Fast Batch Gradient Descent
	6.1 Introduction
	6.2 Related Work
	6.3 Preliminaries
	6.3.1 The Generic Embedding Model
	6.3.2 Optimization with BGD
	6.3.3 Efficiency Challenge

	6.4 f_BGD
	6.4.1 Partition of the BGD Loss
	6.4.2 Constructing a Dot Product Structure
	6.4.3 Efficient Gradient
	6.4.4 Effective Weighting on Missing Data

	6.5 Improved f_BGD
	6.5.1 Gradient Instability Issue in CF Settings
	6.5.2 Solving the Unstable Gradient Problem

	6.6 Experiments
	6.6.1 Experimental Settings
	6.6.1.1 Datasets
	6.6.1.2 Baselines and Evaluation Protocols
	6.6.1.3 Experimental Reproducibility

	6.6.2 Performance Evaluation
	6.6.2.1 Model Comparison
	6.6.2.2 Impact of f_BGD Weighting
	6.6.2.3 Impact of Adding Features
	6.6.2.4 Efficiency

	6.7 Chapter Summary

	IV Deep Learning for Session-based Recommendation
	7 Deep Learning for Session-based recommendation
	7.1 Introduction
	7.2 Preliminaries
	7.2.1 Top-N Sequential Recommendation
	7.2.2 Limitations of Caser
	7.2.3 Related Work

	7.3 Model Design
	7.3.1 Sequential Generative Modeling
	7.3.2 Network Architecture
	7.3.2.1 Embedding Look-up
	7.3.2.2 Dilation
	7.3.2.3 One-dimensional Transformation

	7.3.3 Residual Learning
	7.3.3.1 Masking

	7.3.4 Final Layer, Network Training and Generating

	7.4 Experiments
	7.4.1 Datasets and Experiment Setup
	7.4.1.1 Datasets and Preprocessing
	7.4.1.2 Hyper-parameter Settings
	7.4.1.3 Evaluation Protocols

	7.4.2 Results Summary

	7.5 Chapter Summary

	V Conclusion
	8 Conclusions and Future Work
	8.1 Contribution Summary
	8.2 Future Work
	8.3 Closing Remarks

	References

